Skip to main content Accessibility help
×
Home

Analytical Multimode Scanning and Transmission Electron Imaging and Tomography of Multiscale Structural Architectures of Sulfur Copolymer-Based Composite Cathodes for Next-Generation High-Energy Density Li–S Batteries

  • Vladimir P. Oleshko (a1), Andrew A. Herzing (a2), Christopher L. Soles (a1), Jared J. Griebel (a3), Woo J. Chung (a3), Adam G. Simmonds (a3) and Jeffrey Pyun (a3)...

Abstract

Poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymers synthesized via inverse vulcanization represent an emerging class of electrochemically active polymers recently used in cathodes for Li–S batteries, capable of realizing enhanced capacity retention (1,005 mAh/g at 100 cycles) and lifetimes of over 500 cycles. The composite cathodes are organized in complex hierarchical three-dimensional (3D) architectures, which contain several components and are challenging to understand and characterize using any single technique. Here, multimode analytical scanning and transmission electron microscopies and energy-dispersive X-ray/electron energy-loss spectroscopies coupled with multivariate statistical analysis and tomography were applied to explore origins of the cathode-enhanced capacity retention. The surface topography, morphology, bonding, and compositions of the cathodes created by combining sulfur copolymers with varying 1,3-diisopropenylbenzene content and conductive carbons have been investigated at multiple scales in relation to the electrochemical performance and physico-mechanical stability. We demonstrate that replacing the elemental sulfur with organosulfur copolymers improves the compositional homogeneity and compatibility between carbons and sulfur-containing domains down to sub-5 nm length scales resulting in (a) intimate wetting of nanocarbons by the copolymers at interfaces; (b) the creation of 3D percolation networks of conductive pathways involving graphitic-like outer shells of aggregated carbons; (c) concomitant improvements in the stability with preserved meso- and nanoscale porosities required for efficient charge transport.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Analytical Multimode Scanning and Transmission Electron Imaging and Tomography of Multiscale Structural Architectures of Sulfur Copolymer-Based Composite Cathodes for Next-Generation High-Energy Density Li–S Batteries
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Analytical Multimode Scanning and Transmission Electron Imaging and Tomography of Multiscale Structural Architectures of Sulfur Copolymer-Based Composite Cathodes for Next-Generation High-Energy Density Li–S Batteries
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Analytical Multimode Scanning and Transmission Electron Imaging and Tomography of Multiscale Structural Architectures of Sulfur Copolymer-Based Composite Cathodes for Next-Generation High-Energy Density Li–S Batteries
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author. vladimir.oleshko@nist.gov

References

Hide All
Agulleiro, I. & Fernandez, J.J. (2011). Fast tomographic reconstruction on multicore computers. Bioinformatics 27, 582583.
Airbus Defense & Space (2014). Airbus Zephyr reaches next level, April 24, 2014. Press Release. Available at https://airbusdefenceandspace.com.newsroom/news-and-features/airbus-zephyr-reaches-next-level/ (retrieved April 29, 2015).
Akridge, J.R., Mikhaylik, Y.V. & White, N. (2004). Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ion 175, 243245.
Aurbach, D., Pollak, E., Elazari, R., Salitra, G., Scordilis Kelley, C. & Affinito, J. (2009). On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156, A694A702.
Bals, S., Kabius, B., Haider, M., Radmilovic, V. & Kisielevski, C. (2004). Annular dark field imaging in a TEM. Solid State Commun 130, 675680.
BBC News Science & Environment (2010). “Eternal” solar plane’s records are confirmed. 24 December 2010. Available at http://www.bbc.co.uk/news/science-environment-12074162 (retrieved March 4, 2013).
Bonnet, N., Herbin, M. & Vautrot, P. (1997). Multivariate image analysis and segmentation in microanalysis. Scanning Microsc 11, 121.
Bruce, P.G., Freunberger, S.A., Hardwick, L.J. & Tarascon, J.-M. (2012). Li–O2 and Li–S batteries with high energy storage. Nat Mater 11, 1929.
Brückner, J., Thieme, S., Böttger-Hiller, F., Bauer, I., Grossmann, H.T., Strubel, P., Althues, H., Spange, S. & Kaskel, S. (2013). Carbon-based anodes for lithium sulfur full cells with high cycle stability. Adv Funct Mater 24, 12841289.
Buehrer, W., Altorfer, F., Mesot, J., Bill, H., Carron, P. & Smith, H.G. (1991). Lattice dynamics and the diffuse phase transition of lithium sulfide investigated by coherent neutron scattering. J Phys Condens Matter 3, 10551064.
Cañas, N.A., Hirose, K., Pascucci, B., Wagner, N., Friedrich, K.A. & Hiesgen, R. (2013). Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta 97, 4251.
Cao, R., Xu, W., Lv, D., Xiao, J. & Zhang, J.-G. (2015). Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater 5, 1402273.
Cao, Y., Li, X., Aksay, I.A., Lemmon, J., Nie, Z., Yang, Z. & Liu, J. (2011). Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. J Phys Chem Chem Phys 13, 76607665.
Chao, Z.S., Lan, Z. & Yu, J. (2011). Preparation and electrochemical properties of polysulfide polypyrrole. J Power Sources 196, 1026310266.
Chen, M. & Adams, S. (2015). High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J Solid State Electrochem 19, 697702.
Chung, W.-J., Griebel, J.J., Kim, E.-T., Yoon, H.-S., Simmonds, A.G., Ji, H.-J., Dirlam, P.T., Glass, R.S., Wie, J.J., Nguyen, N.A., Guralnick, B.W., Park, J., Somogyi, A., Theato, P., Mackay, M.E., Sung, Y.-E., Char, K.-C. & Pyun, J. (2013). The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat Chem 5, 518524.
Czigany, Z. & Hultman, L. (2010). Interpretation of electron diffraction patterns from amorphous and fullerene-like carbon allotropes. Ultramicroscopy 110, 815819.
Demir-Cakan, R., Morcrette, M., Nouar, F., Davoisne, C., Devic, T., Gonbeau, D., Dominko, R., Serre, C., Ferey, G. & Tarascon, J.-M. (2011). Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J Am Chem Soc 133, 1615416160.
Deng, Z., Zhang, Z., Lai, Y., Liu, J., Li, J. & Liu, Y. (2013). Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading. J Electrochem Soc 160(4), A553A558.
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. New York: Springer. pp. 197–202.
Elazari, R., Salitra, G., Garsuch, A., Panchenko, A. & Aurbach, D. (2011). Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater 23, 56415644.
Elazari, R., Salitra, G., Talyosef, Y., Grinblat, Y., Scordilis-Kelley, C., Xiao, A., Affinito, J. & Aurbach, D. (2010). Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy. J Electrochem Soc 157, A1131A1138.
Fang, X. & Peng, H. (2015). A revolution in electrodes: Recent progress in rechargeable lithium-sulfur batteries. Small 11, 14881511.
Ferreira, A.G.M. & Lobo, L.Q. (2011). The low-pressure phase diagram of sulfur. J Chem Thermodynamics 43, 95104.
Goldstein, J., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Lifshin, E., Sawyer, L. & Michael, J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. New York: Springer. pp. 61–390.
Griebel, J.J., Li, G, Glass, R.S., Char, K. & Pyun, J. (2015). Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries. J Polym Sci A Polym Chem 53, 173177.
Griebel, J.J., Namnabat, S., Kim, E.-T., Himmbelhuber, R., Moronta, D.H., Chung, W.J., Simmonds, A.G., Ngyugen, N., Mackay, M.E., Char, K., Glass, R.S., Norwood, R.A. & Pyun, J. (2014 a). New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers. Adv Mater 26, 30143018.
Griebel, J.J., Nguyen, N.A., Astashkin, A.V., Glass, R.S., Mackay, M.E., Char, K. & Pyun, J. (2014 b). Preparation of dynamic covalent polymers via inverse vulcanization of elemental sulfur. ACS Macro Lett 3, 12581261.
Grogger, W., Hofer, F. & Kothleitner, G. (1998). Quantitative chemical phase analysis of EFTEM elemental maps using scatter diagrams. Micron 29, 4351.
Hassoun, J. & Scrosati, B. (2010 a). A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed 49, 23712374.
Hassoun, J. & Scrosati, B. (2010 b). Moving to a solid-state configuration: A valid approach to making lithium-sulfur batteries viable for practical applications. Adv Mater 22, 51985201.
Hassoun, J., Sun, Y.-K. & Scrosati, B. (2011). Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery. J Power Sources 196, 343348.
Hassoun, J., Kim, J., Lee, D.-J., Jung, H.-G., Lee, S.-M., Sun, Y.-K. & Scrosati, B. (2012). A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon–sulfur battery. J Power Sources 202, 308308.
Hayashi, A., Ohtomo, T., Mizuno, F., Tadanaga, K. & Tatsumisago, M. (2003). All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem Commun 5, 701705.
Helen, M., Reddy, M.A., Diemant, T., Golla-Schindler, U., Behm, R.J., Kaiser, U. & Fichtner, M. (2015). Single step transformation of sulfur to Li2S2/Li2S in Li-S batteries. Sci Rep 5, 12146.
Huang, C., Xiao, J., Shao, Y., Zheng, J., Bennett, W.D., Lu, D., Laxmikant, S.V., Engelhard, M., Ji, L., Zhang, J., Li, X., Graff, G.L. & Liu, J. (2014). Manipulating surface reactions in lithium-sulfur batteries using hybrid anode structures. Nat Commun 5, 4015.
Islam, M.M., Ostadhossein, A., Borodin, O., Yeates, A.T., Tipton, W.W., Hennig, R.G., Kumar, N. & van Duin, A.C.T. (2015). ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials. Phys Chem Chem Phys 17, 33833393.
Jayaprakash, N., Shen, J., Moganty, S.S., Corona, A. & Archer, L.A. (2011). Porous hollow carbon @ sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed 50, 59045908.
Jeanguillaume, C. (1985). Multiparameter statistical analysis of STEM micrographs. J Microsc Electron 10, 409415.
Ji, X., Lee, K.T. & Nazar, L.F. (2009). A highly ordered nanostructured carbon–sulfur cathode for lithium–sulfur batteries. Nat Mater 8, 500506.
Ji, X. & Nazar, L. F. (2010). Advances in Li-S batteries. J Mater Chem 20, 98219826.
Ji, X., Evers, S., Black, R. & Nazar, L.F. (2011 a). Stabilizing lithium–sulfur cathodes using polysulfide reservoirs. Nat Commun 2, 325.
Ji, L., Rao, M., Aloni, S., Wang, L., Cairns, E.J. & Zhang, Y. (2011 b). Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci 4, 50535059.
Ji, L., Rao, M., Zheng, H., Zhang, L., Li, Y., Duan, W., Guo, J., Cairns, E.J. & Zhang, Y. (2011 c). Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133, 1852218525.
Kim, H., Lee, J., Ahn, H., Kim, O. & Park, M.J. (2015). Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat Commun 6, 7278.
Kim, J., Oleshko, V.P., Hudson, S.D., Soles, C., Griebel, J.J., Chung, W.J., Simmonds, A.G. & Pyun, J. (2013). AEM and FESEM investigation of the capacity retention mechanisms in novel composite sulfur copolymer cathodes for high-energy density Li-S batteries. Microsc Microanal 19(Suppl 2), 16561657.
Kinoshita, S., Okuda, K., Machida, N., Naito, M. & Sigematsu, T. (2014). All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials. Solid State Ion 256, 97102.
Kiya, Y., Henderson, J.C. & Abruna, H.D. (2007). 4-Amino-4H-1,2,4-triazole-3,5-dithiol a modifiable organosulfur compound as a high-energy cathode for lithium-ion rechargeable batteries. J Electrochem Soc 154, A844A848.
Kotula, P.G., Keenan, M.R. & Michael, J.R. (2003). Automated analysis of SEM X-ray spectral images: A powerful new microanalysis tool. Microsc Microanal 9, 117.
Levin, B.D.A. & Muller, D.A. (2013). Physical limitations for transmission electron microscopy of lithium battery materials. Microsc Microanal 19(Suppl 2), 12281229.
Levin, B.D.A., Zachman, M.J., Werner, J.G., Wiesner, U., Kourkoutis, L.F. & Muller, D. (2014). Characterizing sulfur in TEM and STEM, with applications to Li-S batteries. Microsc Microanal 20(Suppl 3), 446447.
Li, W., Zheng, G., Yang, Y., Seh, Z.W., Liu, N. & Cui, Y. (2013). High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc Natl Acad Sci U S A 110, 71487153.
Li, X., Cao, Y., Qi, W., Saraf, L.V., Xiao, J., Nie, Z., Mietek, J., Zhang, J.-G., Schwenzer, B. & Liu, J. (2011). Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem 21, 1660316610.
Li, Z., Huang, Y., Yuan, L., Hao, Z. & Huang, Y. (2015). Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 92, 4163.
Liang, C., Dudney, N.J. & Howe, J.Y. (2009). Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater 21, 47244730.
Lim, J., Pyun, J. & Char, K. (2015). Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials. Angew Chem Int Ed 54, 32493258.
Liu, M.L., Visco, S.J. & Dejonghe, L.C. (1991 a). Novel solid redox polymerization electrodes. All‐solid‐state, thin‐film, rechargeable lithium batteries. J Electrochem Soc 138, 18911895.
Liu, M.L., Visco, S.J. & Dejonghe, L.C. (1991 b). Novel solid redox polymerization electrodes. Electrochemical properties. J Electrochem Soc 138, 18961901.
Marmorstein, D., Yu, T.H., Striebel, K.A., McLarnon, F.R., Hou, J. & Cairns, E.J. (2000). Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89, 219226.
Muto, S., Yoshida, T. & Tatsumi, K. (2009). Diagnostic nano-analysis of materials properties by multivariate curve resolution applied to spectrum images by S/TEM-EELS. Mater Trans 50, 964969.
Nellist, P.D. (2011). The principles of STEM imaging. In Scanning Transmission Electron Microscopy. Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 91116. New York: Springer.
Nikkei Asian Review, December 17–18, 2015 – Press Release; http://asia.nikkei.com/Tech-Science/Tech/Sony-battery-to-offer-40-longer-phone-life/ Sony battery to offer 40% longer phone life; ibid; http://techon.nikkeibp.co.jp/atclen/news_en/15mk/121800252/ Sony developing high-capacity rechargeable battery (retrieved March 18, 2016).
Oleshko, V.P. (2012). The use of plasmon spectroscopy and imaging in a transmission electron microscope to probe physical properties at the nanoscale. J Nanosci Nanotechnol 12, 85808588.
Oleshko, V.P., Herzing, A., Kim, J., Schaefer, J., Soles, C., Griebel, J.J., Chung, W.J., Simmonds, A.G. & Pyun, J. (2015 a). Multiscale structural architectures of novel sulfur copolymer composite cathodes for high-energy density Li-S batteries studied by analytical multimode STEM imaging and tomography. Microsc Microanal 21(Suppl 3), 143144.
Oleshko, V.P., Kim, J., Schaefer, J., Hudson, S., Soles, C.L., Simmonds, A.G., Griebel, J.J., Glass, R.S., Char, K. & Pyun, J. (2015 b). Structural origins of enhanced capacity retention in copolymerized sulfur–based composite cathodes for high-energy density Li-S batteries. MRS Commun 5, 353364.
Oleshko, V.P., Lam, T., Ruzmetov, D., Haney, P., Lezec, H.J., Davydov, A.V., Krylyuk, S., Cumings, J. & Talin, A.A. (2014). Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes. Nanoscale 6, 1175611768.
Oleshko, V.P., Scordilis-Kelley, C. & Xiao, A. (2009 b). In situ and ex situ electron microscopy and spectroscopy investigation of capacity fade mechanisms of rechargeable Li-S batteries. Microsc Microanal 15(Suppl 2), 718719.
Oleshko, V.P., Scordilis-Kelley, C., Xiao, A., Affinito, J., Talyossef, Y., Elazari, R., Grinblat, Y. & Aurbach, D. (2009 a). Characterization of advanced high-energy density Li-S batteries by FE-AEM, SEM/EDS X-ray spectral imaging and feature sizing/chemical typing techniques. Microsc Microanal 15(Suppl 2), 13981399.
Orazem, M.E. & Tribollet, B. (2008). Electrochemical Impedance Spectroscopy. The Electrochemical Society Series. Hoboken, NJ: A John Wiley & Sons, Inc. pp. 97–460.
Peled, E., Sternberg, Y., Gorenshtein, A. & Lavi, Y. (1989). Lithium-sulfur battery: Evaluation of dioxolane-based electrolytes. J Electrochem Soc 136, 16211625.
Pennycook, S.J. (2011). A scan through the history of STEM. In Scanning Transmission Electron Microscopy. Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 190. New York: Springer.
Ruzmetov, D., Oleshko, V.P., Haney, P.M., Lezec, H., Karki, K., Baloch, K.H., Agrawal, A.K., Davydov, A.V., Krylyuk, S., Liu, Y., Huang, J.Y., Tanase, M., Cumings, J. & Talin, A.A. (2012). Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett 12, 505511.
Sarahan, M.C., Chi, M., Masief, D.J. & Browning, N.D. (2011). Point defect characterization in HAADF-STEM images using multivariate statistical analysis. Ultramicroscopy 111, 251257.
Schuster, J., He, G., Mandlmeier, B., Yim, T., Lee, K.T., Bein, T. & Nazar, L.F. (2012). Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 51, 35913595.
Scordilis-Kelley, C.A., Mikhaylik, Y., Kovalev, I., Oleshko, V.P., Campbell, C. & Affinito, J.D. (2009). Electrochemical cells comprising porous structures comprising sulfur. Internatl Pat Appl. WO 2011/031297 A2, Sion Power Corp, 28 August.
Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.-C. & Cui, Y. (2013). Sulfur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulfur batteries. Nat Commun 4, 1331.
Simmonds, A.G., Griebel, J.J., Park, J., Kim, K.R., Chung, W.J., Oleshko, V.P., Kim, J., Kim, E.T., Glass, R.S., Soles, C.L., Sung, Y.-E., Char, K. & Pyun, J. (2014). Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li−S batteries. ACS Macro Lett 3, 229232.
Suryanto, B.H.R. & Zhao, C. (2016). Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions. Chem Commun 52, 64396442.
Steudel, R. & Eckert, B. (2003). Solid sulfur allotropes. In Topics in Current Chemistry (vol. 230 A. de Meijere et al. (Eds.), pp. 179. Berlin: Springer-Verlag.
Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. (2013). A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4, 1481.
Tatsuma, T., Sotomura, T., Sato, T., Buttry, D.A. & Oyama, N. (1995). Dimercaptan-polyaniline cathodes for lithium batteries: Addition of a polypyrrole derivative for rapid charging. J Electrochem Soc 142, L182L184.
Thévenaz, P., Ruttimann, U.E. & Unser, M. (1998). A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process. 7, 2741.
Ticey, J., Oleshko, V.P., Zhu, Y., Wang, C. & Cumings, J. (2015). In situ analytical transmission electron microscopy study of electrochemical lithiation of a sulfur—carbon nanotube composite cathode. Microsc Microanal 15(Suppl 3), 15131514.
Vaughey, J., Liu, G. & Zhang, J.-G. (2014). Stabilizing the surface of lithium metal. MRS Bull 39, 429435.
Wang, J., Yang, J., Wan, C., Du, K., Xie, J. & Xu, N. (2003). Sulfur composite cathode materials for rechargeable lithium batteries. Adv Funct Mater 13, 487492.
Wang, J.L., Yang, J., Xie, J.Y., Xu, N.X. & Li, Y. (2002). Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun 4, 499502.
Wu, F., Chen, J., Chen, R., Wu, S., Li, L., Chen, S. & Zhao, T. (2011). Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115, 60576063.
Wu, M., Cui, Y. & Fu, Y. (2015). Li2S nanocrystals confined in free-standing carbon paper for high performance lithium-sulfur batteries. ACS Appl Mater Interfaces 7, 2147921486.
Xiao, L., Cao, Y., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z., Exarhos, G.J. & Liu, J. (2012). A soft approach to encapsulate sulfur. Adv Mater 24, 11761181.
Xu, R., Belharouak, I., Zhang, X., Chamoun, R., Yu, C., Ren, Y., Nie, A., Shahbazian-Yassar, R., Lu, J., Li, J.C.M. & Amine, K. (2014). Insight into sulfur reactions in Li−S batteries. ACS Appl Mater Interfaces 6, 2193821945.
Xu, R., Lu, J. & Amine, K. (2015). Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv Energy Mater 5, 1500408.
Yan, J., Liu, X., Qi, H., Li, W., Zhou, Y., Yao, M. & Li, B. (2015). High-performance lithium-sulfur batteries with a cost-effective carbon paper electrode and high sulfur-loading. Chem Mater 27, 63946401.
Yang, Y., McDowell, M.T., Jackson, A., Cha, J.J., Hong, S.S. & Cui, Y. (2010). New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett 10, 14861491.
Yang, Y., Zheng, G., Misra, S., Nelson, J., Toney, M.F. & Cui, Y. (2012). High-capacity micrometer-sized Li2S particles as cathode materials. J Am Chem Soc 134, 1538715394.
Yao, H., Zheng, G., Hsu, P.-C., Kong, D., Cha, J.J., Li, W., Seh, Z.W., McDowell, M.T., Yan, K., Liang, Z., Narasihman, V.K. & Cui, Y. (2014). Improving lithium–sulfur batteries through spatial control of sulfur species deposition on a hybrid electrode surface. Nat Commun 5, 3943.
Zeng, Q., Li, F., Gentle, I.R., Cheng, H.-M. & Wang, D.-W. (2015). Dispersible percolating carbon nano-electrodes for improvement of polysulfide utilization in Li-S batteries. Carbon 93, 161168.

Keywords

Type Description Title
WORD
Supplementary materials

Oleshko supplementary material
Figure 1S-4S

 Word (26.1 MB)
26.1 MB

Analytical Multimode Scanning and Transmission Electron Imaging and Tomography of Multiscale Structural Architectures of Sulfur Copolymer-Based Composite Cathodes for Next-Generation High-Energy Density Li–S Batteries

  • Vladimir P. Oleshko (a1), Andrew A. Herzing (a2), Christopher L. Soles (a1), Jared J. Griebel (a3), Woo J. Chung (a3), Adam G. Simmonds (a3) and Jeffrey Pyun (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed