Skip to main content Accessibility help
×
Home

Analysis of Grayscale Characteristics in Images of Labeled Microtubules from Cultured Cardiac Myocytes

  • Yongming Dang (a1), Xiaodong Lan (a1), Qiong Zhang (a1), Lingfei Li (a1) and Yuesheng Huang (a1)...

Abstract

Microtubules of cardiac myocytes depolymerize after a hypoxic insult or treatment with colchicine. However, little attention has been paid to quantifying changes in microtubule distribution when using fluorescent images. We converted fluorescence images of labeled microtubules in H9C2 cardiac myocytes to grayscale images, then filtered the images to remove any noise, and used grayscale histograms to quantify features of the images. The results show that parameters such as the mean, variance, skewness, kurtosis, energy, and entropy can be used to quantitatively describe the distribution of microtubules in cells. Quantitative characteristics of microtubule distribution were similar after culturing cells under hypoxic conditions or after treatment with colchicine. These results parallel those described for neonatal rat cardiac myocytes following ischemia and hypoxia. In addition, we provide a method for internal segmentation of the cells, which revealed that microtubular depolymerization was more evident near the cell membrane following hypoxia or colchicine treatment.

Copyright

Corresponding author

* Corresponding author. yshuang.tmmu@gmail.com

References

Hide All
Akhmanova, A. & Steinmetz, M.O. (2008). Tracking the ends: A dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9(4), 309322.
Applegate, K.T., Besson, S., Matov, A., Bagonis, M.H., Jaqaman, K. & Danuser, G. (2011). Plustiptracker: Quantitative image analysis software for the measurement of microtubule dynamics. J Struct Biol 176(2), 168184.
Bloom, K.S., Beach, D.L., Maddox, P., Shaw, S.L., Yeh, E. & Salmon, E.D. (1999). Using green fluorescent protein fusion proteins to quantitate microtubule and spindle dynamics in budding yeast. Methods Cell Biol 61, 369383.
Dalbeth, N., Lauterio, T.J. & Wolfe, H.R. ( 2014). Mechanism of action of colchicine in the treatment of gout. Clin Ther 36(10), 14651479.
Dang, Y.M., Fang, Y.D., Hu, J.Y., Zhang, J.P., Song, H.P., Zhang, Y.M., Zhang, Q. & Huang, Y.S. (2010). Influence of microtubule depolymerization of myocardial cells on mitochondria distribution and energy metabolism in adult rats. Zhonghua Shao Shang Za Zhi 26(1), 1822.
Fang, Y., Hamit, M., Kutluk, A., Chuanbo, Y., Li, L., Weikang, Y. & Dewei, K. (2013). Feature extraction and analysis on X-ray image of Xinjiang Kazak Esophageal cancer by using gray-level histograms. IEEE International Conference on Medical Imaging Physics and Engineering (ICMIPE), 2013.
Fang, Y.D., Xu, X., Dang, Y.M., Zhang, Y.M., Zhang, J.P., Hu, J.Y., Zhang, Q., Dai, X., Teng, M., Zhang, D.X. & Huang, Y.S. (2011). MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia: Microtubule enhancement and DYNLT1 interaction with VDAC1. PLoS One 6(12), e28052.
Ganote, C. & Armstrong, S. (1993). Ischaemia and the myocyte cytoskeleton: Review and speculation. Cardiovasc Res 27(8), 13871403.
Hu, J.Y., Chu, Z.G., Han, J., Dang, Y.M., Yan, H., Zhang, Q., Liang, G.P. & Huang, Y.S. (2010). The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells. Cell Mol Life Sci 67(2), 321333.
Hu, J.Y., Han, J., Chu, Z.G., Song, H.P., Zhang, D.X., Zhang, Q. & Huang, Y.S. (2009). Astragaloside IV attenuates hypoxia-induced cardiomyocyte damage in rats by upregulating superoxide dismutase-1 levels. Clin Exp Pharmacol Physiol 36(4), 351357.
Huang, Y.S. (2008). Myocardial injury after burn at early stage and its treatment. Zhonghua Shao Shang Za Zhi 24(5), 369371.
Kuang, Y. & Huang, Y.S. (2007 a). Effect of the microtubule depolymerization on mitochondria damage in rat myocardiocytes early after hypoxia. Zhonghua Shao Shang Za Zhi 23(4), 288291.
Kuang, Y. & Huang, Y.S. (2007 b). Study on injury to microtubule of cardiomyocytes at early post-hypoxia stage. Zhonghua Shao Shang Za Zhi 23(3), 172174.
Lampidis, T.J., Kurtoglu, M., Maher, J.C., Liu, H., Krishan, A., Sheft, V., Szymanski, S., Fokt, I., Rudnicki, W.R., Ginalski, K., Lesyng, B. & Priebe, W. (2006). Efficacy of 2-halogen substituted D-glucose analogs in blocking glycolysis and killing “hypoxic tumor cells”. Cancer Chemother Pharmacol 58(6), 725734.
Leung, C.Y. & Fernandez-Gonzalez, R. (2015). Quantitative image analysis of cell behavior and molecular dynamics during tissue morphogenesis. Methods Mol Biol 1189, 99113.
Lo, W.Y. & Puchalski, S.M. (2008). Digital image processing. Vet Radiol Ultrasound 49(Suppl 1), S42S47.
Lu, Y., Huang, C., Wang, J. & Shang, P. (2014). An improved quantitative analysis method for plant cortical microtubules. Sci World J 2014, 637183.
Oberholzer, M., Ostreicher, M., Christen, H. & Bruhlmann, M. (1996). Methods in quantitative image analysis. Histochem Cell Biol 105(5), 333355.
Sarantitis, I., Papanastasopoulos, P., Manousi, M., Baikoussis, N.G. & Apostolakis, E. (2012). The cytoskeleton of the cardiac muscle cell. Hellenic J Cardiol 53(5), 367379.
Teng, M., Dang, Y.M., Zhang, J.P., Zhang, Q., Fang, Y.D., Ren, J. & Huang, Y.S. (2010). Microtubular stability affects cardiomyocyte glycolysis by HIF-1alpha expression and endonuclear aggregation during early stages of hypoxia. Am J Physiol Heart Circ Physiol 298(6), H19191931.
Teng, M., Jiang, X.P., Zhang, Q., Zhang, J.P., Zhang, D.X., Liang, G.P. & Huang, Y.S. (2012). Microtubular stability affects pVHL-mediated regulation of HIF-1alpha via the p38/MAPK pathway in hypoxic cardiomyocytes. PLoS One 7(4), e35017.
Ujihara, Y., Nakamura, M., Miyazaki, H. & Wada, S. (2013). Segmentation and morphometric analysis of cells from fluorescence microscopy images of cytoskeletons. Comput Math Methods Med 2013, 381356.
Vassy, J., Beil, M., Irinopoulou, T. & Rigaut, J.P. (1996). Quantitative image analysis of cytokeratin filament distribution during fetal rat liver development. Hepatology 23(3), 630638.
Wessels, D., Kuhl, S. & Soll, D.R. (2009). 2D and 3D quantitative analysis of cell motility and cytoskeletal dynamics. Methods Mol Biol 586, 315335.
White, E. (2011). Mechanical modulation of cardiac microtubules. Pflugers Arch 462(1), 177184.
Xu, X., Zhang, Q., Hu, J.Y., Zhang, D.X., Jiang, X.P., Jia, J.Z., Zhu, J.C. & Huang, Y.S. (2013). Phosphorylation of DYNLT1 at serine 82 regulates microtubule stability and mitochondrial permeabilization in hypoxia. Mol Cells 36(4), 322332.
Yao, Y.H., Xiong, J.H., Liang, Z.G., Yan, H. & Li, Y.H. (2004). Gray characteristic analysis of microtubules in cardiac myocytes. Space Med Med Eng (Beijing) 17(5), 322325.
Zheng, J., Fang, Y.D., Teng, M., Dang, Y.M., Kuang, Y., Yan, H., Zhang, D.X., Song, H.P., Zhang, Q. & Huang, Y.S. (2006). Study on the influence of hypoxia induced microtubule damage on the opening of mitochondrial permeable transition pore of cardiac myocytes in rat. Zhonghua Shao Shang Za Zhi 22(3), 195198.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Dang supplementary material S1
Figure

 Unknown (2.2 MB)
2.2 MB

Analysis of Grayscale Characteristics in Images of Labeled Microtubules from Cultured Cardiac Myocytes

  • Yongming Dang (a1), Xiaodong Lan (a1), Qiong Zhang (a1), Lingfei Li (a1) and Yuesheng Huang (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed