Skip to main content Accessibility help

Analysis of Ferrous on Ten-Eleven Translocation Activity and Epigenetic Modifications of Early Mouse Embryos by Fluorescence Microscopy

  • Ming-Hui Zhao (a1), Shuang Liang (a1), Jing Guo (a1), Jeong-Woo Choi (a1), Nam-Hyung Kim (a1), Wen-Fa Lu (a2) and Xiang-Shun Cui (a1)...


Iron is an essential trace element that plays important roles in the cellular function of all organs and systems. However, the function of Fe(II) in mammalian embryo development is unknown. In this study, we investigated the role of Fe(II) during preimplantation embryo development. Depletion of Fe(II) using thiosemicarbazone-24 (TSC24), a specific Fe(II) chelator, rescued quenching of the Fe(II)-sensitive fluorophore phen green-SK. After in vitro fertilization, TSC24 significantly reduced the cleavage rate as well as blastocyst formation. The hatch rate of blastocysts was also reduced with 1 pM TSC24 treatment (20.25±1.86 versus 42.28±12.96%, p<0.05). Blastocysts were cultured in leukemia inhibitory factor-free mouse embryonic stem cell culture medium with or without TSC24, and those with depleted Fe(II) displayed delayed attachment and lost the ability to induce embryoid body formation. To further explore the mechanism of Fe(II) in embryo development, we assessed the expression of 5-hydroxymethylcytosine (5hmC) and OCT4 in the pronuclear and blastocyst stages, respectively. We observed that Fe(II) reduced 5hmC and OCT4 expression, which could be explained by low ten-eleven translocation (TET) enzyme activity induced by TSC24 treatment. These findings demonstrate that Fe(II) is required for mammalian embryo development and that it facilitates the process via regulation of TET activity.


Corresponding author

* Corresponding authors.;


Hide All
Andersen, H.S., Gambling, L., Holtrop, G. & McArdle, H.J. (2006). Maternal iron deficiency identifies critical windows for growth and cardiovascular development in the rat postimplantation embryo. J Nutr 136(5), 11711177.
Ba, Q., Hao, M., Huang, H., Hou, J., Ge, S., Zhang, Z., Yin, J., Chu, R., Jiang, H., Wang, F., Chen, K., Liu, H. & Wang, H. (2011). Iron deprivation suppresses hepatocellular carcinoma growth in experimental studies. Clin Cancer Res 17(24), 76257633.
Borgel, J., Guibert, S., Li, Y., Chiba, H., Schubeler, D., Sasaki, H., Forne, T. & Weber, M. (2010). Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42(12), 10931100.
Cedar, H. & Bergman, Y. (2009). Linking DNA methylation and histone modification: Patterns and paradigms. Nat Rev Genet 10(5), 295304.
Dong, F., Zhang, X., Culver, B., Chew, H.G. Jr., Kelley, R.O. & Ren, J. (2005). Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: Involvement of nitric oxide synthase and protein tyrosine nitration. Clin Sci (Lond) 109(3), 277286.
Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S.J., Moynihan, J., Paw, B.H., Drejer, A., Barut, B., Zapata, A., Law, T.C., Brugnara, C., Lux, S.E., Pinkus, G.S., Pinkus, J.L., Kingsley, P.D., Palis, J., Fleming, M.D., Andrews, N.C. & Zon, L.I. (2000). Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403(6771), 776781.
Dunn, L.L., Suryo Rahmanto, Y. & Richardson, D.R. (2007). Iron uptake and metabolism in the new millennium. Trends Cell Biol 17(2), 93100.
Ganz, T. (2013). Systemic iron homeostasis. Physiol Rev 93(4), 17211741.
Ito, S., D’Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C. & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310), 11291133.
Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C. & Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047), 13001303.
Kataoka, H. & Sekiguchi, M. (1985). Molecular cloning and characterization of the alkB gene of Escherichia coli . Mol Gen Genet 198(2), 263269.
Klose, R.J., Kallin, E.M. & Zhang, Y. (2006). JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7(9), 715727.
Kurosawa, H. (2007). Methods for inducing embryoid body formation: In vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103(5), 389398.
Liu, X.B., Yang, F. & Haile, D.J. (2005). Functional consequences of ferroportin 1 mutations. Blood Cells Mol Dis 35(1), 3346.
Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature 403(6769), 501502.
McKie, A.T., Marciani, P., Rolfs, A., Brennan, K., Wehr, K., Barrow, D., Miret, S., Bomford, A., Peters, T.J., Farzaneh, F., Hediger, M.A., Hentze, M.W. & Simpson, R.J. (2000). A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5(2), 299309.
Mitchell, C.J., Shawki, A., Nemeth, E., Ganz, T. & Mackenzie, B. (2014). Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. Cell Physiology 306(5), C450–C459 (PMCID: PMC4042619).
Okonko, D.O. & Anker, S.D. (2004). Anemia in chronic heart failure: Pathogenetic mechanisms. J Card Fail 10(1 Suppl), S5S9.
Ponka, P. (1997). Tissue-specific regulation of iron metabolism and heme synthesis: Distinct control mechanisms in erythroid cells. Blood 89(1), 125.
Rice, A.E., Mendez, M.J., Hokanson, C.A., Rees, D.C. & Bjorkman, P.J. (2009). Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J Mol Biol 386(3), 717732.
Santos, F., Hendrich, B., Reik, W. & Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1), 172182.
Seisenberger, S., Peat, J.R., Hore, T.A., Santos, F., Dean, W. & Reik, W. (2013). Reprogramming DNA methylation in the mammalian life cycle: Building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 368(1609), 20110330.
Senner, C.E., Krueger, F., Oxley, D., Andrews, S. & Hemberger, M. (2012). DNA methylation profiles define stem cell identity and reveal a tight embryonic-extraembryonic lineage boundary. Stem Cells 30(12), 27322745.
Shingles, R., North, M. & McCarty, R.E. (2001). Direct measurement of ferrous ion transport across membranes using a sensitive fluorometric assay. Anal Biochem 296(1), 106113.
Shingles, R., North, M. & McCarty, R.E. (2002). Ferrous ion transport across chloroplast inner envelope membranes. Plant Physiol 128(3), 10221030.
Sluhots’ka, I.B., Serediuk, N.M., Vakaliuk, I.P. & Sierna, A.M. (2002). Clinical and hemodynamic characteristics of heart dysfunction in patients with iron deficiency anemia. Lik Sprava 2, 141142.
Walter, P.B., Knutson, M.D., Paler-Martinez, A., Lee, S., Xu, Y., Viteri, F.E. & Ames, B.N. (2002). Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Natl Acad Sci USA 99(4), 22642269.
Wu, S.C. & Zhang, Y. (2010). Active DNA demethylation: Many roads lead to Rome. Nat Rev Mol Cell Biol 11(9), 607620.
Yi, C., Yang, C.G. & He, C. (2009). A non-heme iron-mediated chemical demethylation in DNA and RNA. Acc Chem Res 42(4), 519529.
Zhao, M.H., Liang, S., Kim, S.H., Cui, X.S. & Kim, N.H. (2015). Fe(III) is essential for porcine embryonic development via mitochondrial function maintenance. PLoS One 10(7), e0130791.


Related content

Powered by UNSILO

Analysis of Ferrous on Ten-Eleven Translocation Activity and Epigenetic Modifications of Early Mouse Embryos by Fluorescence Microscopy

  • Ming-Hui Zhao (a1), Shuang Liang (a1), Jing Guo (a1), Jeong-Woo Choi (a1), Nam-Hyung Kim (a1), Wen-Fa Lu (a2) and Xiang-Shun Cui (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.