Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T09:26:51.609Z Has data issue: false hasContentIssue false

Three-Dimensional Structural Characterization of Nonwoven Fabrics

Published online by Cambridge University Press:  06 December 2012

Lalith B. Suragani Venu
Affiliation:
The Nonwovens Institute, North Carolina State University, 2401 Research Drive, Box 8301, Raleigh, NC 27695-8301, USA
Eunkyoung Shim*
Affiliation:
The Nonwovens Institute, North Carolina State University, 2401 Research Drive, Box 8301, Raleigh, NC 27695-8301, USA
Nagendra Anantharamaiah
Affiliation:
The Nonwovens Institute, North Carolina State University, 2401 Research Drive, Box 8301, Raleigh, NC 27695-8301, USA
Behnam Pourdeyhimi
Affiliation:
The Nonwovens Institute, North Carolina State University, 2401 Research Drive, Box 8301, Raleigh, NC 27695-8301, USA
*
*Corresponding author. E-mail: eshim@ncsu.edu
Get access

Abstract

Nonwoven materials are found in a gamut of critical applications. This is partly due to the fact that these structures can be produced at high speed and engineered to deliver unique functionality at low cost. The behavior of these materials is highly dependent on alignment of fibers within the structure. The ability to characterize and also to control the structure is important, but very challenging due to the complex nature of the structures. Thus, to date, focus has been placed mainly on two-dimensional analysis techniques for describing the behavior of nonwovens. This article demonstrates the utility of three-dimensional (3D) digital volumetric imaging technique for visualizing and characterizing a complex 3D class of nonwoven structures produced by hydroentanglement.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkemper, J. & Voorhees, P.W. (2001). Three-dimensional characterization of dendritic microstructures. Acta Mater 49(5), 897902.CrossRefGoogle Scholar
Aydilek, A.H., Oguz, S.H. & Edil, T.B. (2002). Digital image analysis to determine pore opening size distribution of nonwoven geotextiles. J Comput Civil Eng 16(4), 280290.CrossRefGoogle Scholar
Backer, S. & Petterson, D.R. (1960). Some principles of nonwoven fabrics 1. Text Res J 30, 704711.CrossRefGoogle Scholar
Badel, E., Delisee, C. & Lux, J. (2008). 3D structural characterisation, deformation measurements and assessment of low-density wood fibreboard under compression: The use of X-ray microtomography. Compos Sci Technol 68(7-8), 16541663.CrossRefGoogle Scholar
Butler, I. (1999). The Nonwoven Fabrics Handbook. Cary, NC: INDA, Association of the Nonwoven Fabrics Industry.Google Scholar
Chhabra, R. (2003). Nonwoven uniformity—Measurements using image analysis. Int Nonwovens J 12(1), 4350.Google Scholar
Chinn, D., Ostendorp, P., Haugh, M., Kershmann, R., Kurfess, T., Claudet, A. & Tucker, T. (2004). Three dimensional imaging of LIGA-made microcomponents. J Manuf Sci Eng 126(4), 813821.CrossRefGoogle Scholar
Faessel, M., Delisee, C., Bos, F. & Castera, P. (2005). 3D modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis. Compos Sci Technol 65(13), 19311940.CrossRefGoogle Scholar
Fan, S., Zhang, L., Xu, Y., Cheng, L., Lou, J., Zhang, J. & Yu, L. (2007). Microstructure and properties of 3D needle-punched carbon/silicon carbide brake materials. Compos Sci Technol 67(11-12), 23902398.CrossRefGoogle Scholar
Gardmark, L. & Martenss, L. (1966). An experimental investigation of fiber orientation and some properties of needled felts. Text Res J 36(12), 10371042.CrossRefGoogle Scholar
Ghassemieh, E., Acar, M. & Versteeg, H.K. (2001). Improvement of the efficiency of energy transfer in the hydro-entanglement process. Compos Sci Technol 61(12), 16811694.CrossRefGoogle Scholar
Ghassemieh, E., Acar, M. & Versteeg, H.K. (2002a). Micro-structural analysis of non-woven fabrics using scanning electron microscopy and image processing. Part 2: Application to hydroentangled fabrics. Proc Inst Mech Eng Part L 216(3), 199207.Google Scholar
Ghassemieh, E., Acar, M. & Versteeg, H.K. (2002b). Micro-structural analysis of non-woven fabrics using scanning electron microscopy and image processing. Part 2: Application to hydroentangled fabrics. Proc Inst Mech Eng Part L 216(4), 211218.Google Scholar
Guldemet, B. (2003). The structure and properties of vortex and compact spun yarns. PhD thesis. Raleigh, NC: North Carolina State University. Google Scholar
Hearle, J.W.S. & Purdy, A.T. (1971). The structure of needle punched fabric. Fibre Sci Technol 4(2), 81100.CrossRefGoogle Scholar
Hearle, J.W.S. & Stevenson, P.J. (1964). Studies in nonwoven fabrics: Part IV: Prediction of tensile properties. Text Res J 34(3), 181191.CrossRefGoogle Scholar
Hearle, J.W.S., Sultan, M.A.I. & Choudhari, T.N. (1968). A study of needled fabrics. Part II: Effects of the needling process. J Text Inst 59(2), 103116.CrossRefGoogle Scholar
Higdon, J.J.L. & Ford, G.D. (1996). Permeability of three-dimensional models of fibrous porous media. J Fluid Mech 308, 341361.CrossRefGoogle Scholar
Jagannath, S., Tafresh, H.V. & Pourdeyhimi, B. (2008). A case study of realistic two-scale modeling of water permeability in fibrous media. Sep Sci Technol 43(8), 19011916.CrossRefGoogle Scholar
Komori, T. & Makishima, K. (1978). Estimation of fiber orientation and length in fiber assemblies. Text Res J 48(6), 309.CrossRefGoogle Scholar
Kral, M.V., Mangan, M.A., Spanos, G. & Rosenberg, R.O. (2000). Three-dimensional analysis of microstructures. Mater Charact 45(1), 1723.CrossRefGoogle Scholar
Lehmann, M.J., Hardy, E.H., Jörg, M. & Kasper, G. (2005). MRI as a key tool for understanding and modeling the filtration kinetics of fibrous media. Magn Reson Imaging 23(2), 341342.CrossRefGoogle ScholarPubMed
Li, M., Ghosh, S., Rouns, T.N., Weiland, H., Richmond, O. & Hunt, W. (1998). Serial sectioning method in the construction of 3-D microstructures for particle-reinforced MMCs. Mater Charact 41(2-3), 8195.CrossRefGoogle Scholar
Lindquist, W.B. & Venkatarangan, A. (1999). Investigating 3D geometry of porous media with high resolution images. Phys Chem Earth A 25(7), 593599.CrossRefGoogle Scholar
Lux, J., Delisee, C. & Thibault, X. (2006). 3D characterization of wood based fibrous materials: An application. Image Anal Stereol 25(1), 2535.CrossRefGoogle Scholar
Makimura, M. & Kogame, K. (1989). Fiber entanglements and methods of producing same. U.S. Patent 4833012. Google Scholar
Mao, N. (2009). Permeability in engineered non-woven fabrics having patterned structure. Text Res J 79(15), 13481357.CrossRefGoogle Scholar
Mao, N. & Russell, S. J. (2006). A frame work for determining the bonding intensity in hydroentangled nonwoven fabrics. Compos Sci Technol 66(1), 8091.CrossRefGoogle Scholar
McIntyre, K. (2010). Spunlace still sells. Nonwovens Ind 8, 2528.Google Scholar
Pourdeyhimi, B. & Dent, R. (1997). Measuring fiber orientation in nonwovens, Part IV: Flow field analysis. Text Res J 67(3), 181190.CrossRefGoogle Scholar
Pourdeyhimi, B., Dent, R. & Davis, R. (1997). Measuring fiber orientation in nonwovens, Part III: Fourier Transform. Text Res J 67(2), 143151.CrossRefGoogle Scholar
Pourdeyhimi, B., Dent, R., Jerbi, A., Tanaka, S. & Deshpande, A. (1999). Measuring fiber orientation in nonwovens, Part V: Real webs. Text Res J 69(3), 185192.CrossRefGoogle Scholar
Pourdeyhimi, B., Minton, A. & Putnam, M. (2004). Structure-process-property relationships in hydroentangled nonwovens—Part 1: Preliminary experimental observations. Int Nonwovens J 13(4), 1521.Google Scholar
Pourdeyhimi, B., Ramanathan, R. & Dent, R. (1996a). Measuring fiber orientation in nonwovens, Part I: Simulation. Text Res J 66(11), 713722.CrossRefGoogle Scholar
Pourdeyhimi, B., Ramanathan, R. & Dent, R. (1996b). Measuring fiber orientation in nonwovens, Part II: Direct tracking. Text Res J 66(12), 747753.CrossRefGoogle Scholar
Robertson, A.G., Jang, H.F. & Seth, R.S. (1992). Three-dimensional visualization of confocal images of wood pulp fibers. J Mater Sci Lett 11(21), 14161418.CrossRefGoogle Scholar
Russell, L.K. (1999). Image recording device. U.S. Patent 4960330. Google Scholar
Salvado, R., Silvy, J. & Dréan, J.Y. (2006). Relationship between fibrous structure and spunbond process. Text Res J 76(11), 805812.CrossRefGoogle Scholar
Sampson, W.W. (2009). Materials properties of paper as influenced by its fibrous architecture. Int Mater Rev 54(3), 134156.CrossRefGoogle Scholar
Schweers, E. & Loffler, F. (1993). Analysis of the structure of fibrous filters—Distribution of the local fiber volume fraction and the orientation of the fibers. Staub Reinhalt Luft 53(3), 101107.Google Scholar
Shim, E., Pourdeyhimi, B. & Latifi, M. (2010). Three-dimensional analysis of segmented pie bicomponent nonwovens. J Text Inst 101(9), 773787.CrossRefGoogle Scholar
Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W. & Adler, P.M. (1994). Synchrotron computed microtomography of porous-media—Topology and transports. Phys Rev Lett 73(14), 20012004.CrossRefGoogle ScholarPubMed
Suzuki, S., Yoshihara, T. & Fujuzaki, M. (1979). Nonwoven fabric of three dimensional entanglement. U.S. Patent 4172172. Google Scholar
Tafreshi, H.V. & Pourdeyhimi, B. (2003). The effects of nozzle geometry on waterjet breakup at high Reynolds numbers. Exp Fluids 35(4), 364371.CrossRefGoogle Scholar
Tafreshi, H.V., Pourdeyhimi, B., Holmes, R. & Shiffler, D. (2003). Simulating and characterizing water flows inside hydroentangling orifices. Text Res J 73(3), 256262.CrossRefGoogle Scholar
Tahir, M.A. & Tafreshi, H.V. (2009). Influence of fiber orientation on the transverse permeability of fibrous media. Phys Fluids 21(8), 083604(1–5). CrossRefGoogle Scholar
Tewari, A. & Gokhale, A.M. (2000). Application of three-dimensional digital image processing for reconstruction of microstructural volume from serial sections. Mater Charact 44(3), 259269.CrossRefGoogle Scholar
Thibault, X. & Bloch, J.F. (2002). Structural analysis by X-ray microtomography of a strained nonwoven papermaker felt. Text Res J 72(6), 480485.CrossRefGoogle Scholar
Tumanyan, V.G. & Esipova, N.G. (1975). Investigation of fibrous structures. II. General method for the elucidation of the conformations of the complementary nucleic acids. Biopolymers 14(11), 22312246.CrossRefGoogle Scholar
Vogel, H.J. & Kretzschmar, A. (1996). Topological characterization of pore space in soil—Sample preparation and digital image-processing. Geoderma 73(1-2), 2338.CrossRefGoogle Scholar
Ware, R.W. & LoPresti, V. (1975). Three-dimensional reconstruction from serial sections. Int Rev Cytology 40, 325440.CrossRefGoogle ScholarPubMed
White, C. (1990). Hydroentanglement technology applied to wet-formed and other precursor webs. Tappi J 73(6), 187192.Google Scholar
Wiltshce, M., Donoser, M., Kritzinger, J. & Bauer, W. (2011). Automated serial sectioning applied to 3D paper structure analysis. J Microsc 242(2), 197205.CrossRefGoogle Scholar
Xiang, P., Kuznetsov, A.V. & Seyam, A.M. (2006). Modeling of the hydroentangling process. JEFF 1(2), 115.Google Scholar
Xu, B. & Yu, L. (1997). Determining fiber orientation distribution in nonwovens with Hough transform techniques. Text Res J 67(8), 563571.CrossRefGoogle Scholar