Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-16T07:59:50.369Z Has data issue: false hasContentIssue false

On-Chip Open Microfluidic Devices for Chemotaxis Studies

Published online by Cambridge University Press:  30 July 2012

Gus A. Wright
Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
Lino Costa
Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
Alexander Terekhov
Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
Dawit Jowhar
Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
William Hofmeister
Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
Christopher Janetopoulos*
Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
Corresponding author. E-mail:
Get access


Microfluidic devices can provide unique control over both the chemoattractant gradient and the migration environment of the cells. Our work incorporates laser-machined micro and nanofluidic channels into bulk fused silica and cover slip-sized silica wafers. We have designed “open” chemotaxis devices that produce passive chemoattractant gradients without an external micropipette system. Since the migration area is unobstructed, cells can be easily loaded and strategically placed into the devices with a standard micropipette. The reusable monolithic glass devices have integral ports that can generate multiple gradients in a single experiment. We also used cover slip microfluidics for chemotaxis assays. Passive gradients elicited from these cover slips could be readily adapted for high throughput chemotaxis assays. We have also demonstrated for the first time that cells can be recruited into cover slip ports eliciting passive chemoattractant gradients. This proves, in principle, that intravital cover slip configurations could deliver controlled amounts of drugs, chemicals, or pathogens as well as recruit cells for proteomic or histological analysis in living animals while under microscopic observation. Intravital cover slip fluidics will create a new paradigm for in vivo observation of biological processes.

Biological Applications: Techniques, Software, and Equipment Development
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Abhyankar, V.V., Lokuta, M.A., Huttenlocher, A. & Beebe, D.J. (2006). Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6(3), 389393.CrossRefGoogle ScholarPubMed
Andersson, H. & van den Berg, A. (2003). Microfluidic devices for cellomics: A review. Sensor Actuat B-Chem 92(3), 315325.CrossRefGoogle Scholar
Boyden, S. (1962). The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115, 453466.CrossRefGoogle ScholarPubMed
Bunning, E. (1989). Ahead of His Time: Wilhelm Pfeffer. Ottawa, Ontario, Canada: Carlton University Press.Google Scholar
Butler, K.L., Ambravaneswaran, V., Agrawal, N., Bilodeau, M., Toner, M., Tompkins, R.G., Fagan, S. & Irimia, D. (2010). Burn injury reduces neutrophil directional migration speed in microfluidic devices. PLoS One 5(7), e11921. CrossRefGoogle ScholarPubMed
Condeelis, J., Singer, R.H. & Segall, J.E. (2005). The great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 21, 695718.CrossRefGoogle ScholarPubMed
Costa, L., Terekhov, A., Rajput, D., Hofmeister, W., Jowhar, D., Wright, G. & Janetopoulos, C. (2011). Femtosecond laser machined microfluidic devices for imaging of cells during chemotaxis. J Laser Appl 23(4), 042001042006.CrossRefGoogle ScholarPubMed
Cukierman, E., Pankov, R., Stevens, D.R. & Yamada, K.M. (2001). Taking cell-matrix adhesions to the third dimension. Science 294(5547), 17081712.CrossRefGoogle Scholar
De Paepe, B., Creus, K.K. & De Bleecker, J.L. (2009). Role of cytokines and chemokines in idiopathic inflammatory myopathies. Curr Opin Rheumatol 21(6), 610616.CrossRefGoogle ScholarPubMed
Dimov, I.K., Kijanka, G., Park, Y., Ducrée, J., Kang, T. & Lee, L.P. (2011). Integrated microfluidic array plate (iMAP) for cellular and molecular analysis. Lab Chip 11(16), 27012710.CrossRefGoogle ScholarPubMed
Dorsam, R.T. & Gutkind, J.S. (2007). G-protein-coupled receptors and cancer. Nat Rev Cancer 7(2), 7994.CrossRefGoogle ScholarPubMed
El-Ali, J., Sorger, P.K. & Jensen, K.F. (2006). Cells on chips. Nature 442(7101), 403411.CrossRefGoogle ScholarPubMed
Englert, D.L., Manson, M.D. & Jayaraman, A. (2009). Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl Environ Microbiol 75(13), 45574564.CrossRefGoogle ScholarPubMed
Grill, S.W., Howard, J., Schaffer, E., Stelzer, E.H. & Hyman, A.A. (2003). The distribution of active force generators controls mitotic spindle position. Science 301(5632), 518521.CrossRefGoogle ScholarPubMed
Hak, S., Reitan, N., Haraldseth, O. & de Lange Davies, C. (2010). Intravitreal microscopy in window chambers: A unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis 13(2), 113130.CrossRefGoogle Scholar
Hansson, G.K. (2009). Inflammatory mechanisms in atherosclerosis. J Thromb Haemost 7 (Suppl 1), 328331.CrossRefGoogle ScholarPubMed
Hegerfeldt, Y., Tusch, M., Brocker, E.B. & Friedl, P. (2002). Collective cell movement in primary melanoma explants: Plasticity of cell-cell interaction, ss 1-integrin function, and migration strategies. Cancer Res 62(7), 21252130.Google Scholar
Hochberg, Y. & Tamhane, A.C. (1987). Multiple Comparison Procedures. New York: Wiley.CrossRefGoogle Scholar
Jeon, N.L., Baskaran, H., Dertinger, S.K.W., Whitesides, G.M., Van De Water, L. & Toner, M. (2002). Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20, 826830.CrossRefGoogle Scholar
Johnson, Z., Power, C.A., Weiss, C., Rintelen, F., Ji, H., Ruckle, T., Camps, M., Wells, T.N., Schwarz, M.K., Proudfoot, A.E. & Rommel, C. (2004). Chemokine inhibition—Why, when, where, which and how? Biochem Soc Trans 32(Pt 2), 366377.CrossRefGoogle ScholarPubMed
Jowhar, D., Wright, G., Samson, P.C., Wikswo, J.P. & Janetopoulos, C. (2010). Open access microfluidic device for the study of cell migration during chemotaxis. Integr Biol (Camb) 2(11-12), 648658.CrossRefGoogle Scholar
Ke, K., Hasselbrink, E.F. & Hunt, A.J. (2005). Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates. Anal Chem 77, 50835088.CrossRefGoogle ScholarPubMed
Keenan, T.M. & Folch, A. (2008). Biomolecular gradients in cell culture systems. Lab on a Chip 8(1), 3457.CrossRefGoogle Scholar
Keenan, T.M., Frevert, C.W., Wu, A., Wong, V. & Folch, A. (2010). A new method for studying gradient-induced neutrophil desensitization based on an openmicrofluidic chamber. Lab Chip 10(1), 116122.CrossRefGoogle Scholar
Kim, M., Hwang, D.J., Jeon, H., Hiromatsu, K. & Grigoropoulos, C.P. (2009). Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9(2), 311318.CrossRefGoogle ScholarPubMed
Kim, S., Kim, H.J. & Jeon, N.L. (2010). Biological applications of microfluidic gradient devices. Integr Biol 2, 584603.CrossRefGoogle ScholarPubMed
Knight, B., Laukaitis, C., Akhtar, N., Hotchin, N.A., Edlund, M. & Horwitz, A.R. (2000). Visualizing muscle cell migration in situ . Curr Biol 10(10), 576585.CrossRefGoogle ScholarPubMed
Lauffenburger, D., Rothman, C. & Zigmond, S.H. (1983). Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay. J Immunol 131(2), 940947.CrossRefGoogle ScholarPubMed
Lazennec, G. & Richmond, A. (2010). Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol Med 16(3), 133144.CrossRefGoogle ScholarPubMed
Li, X., Liu, L., Wang, L., Kamei, K., Yuan, Q., Zhang, F., Shi, J., Kusumi, A., Xie, M., Zhao, Z. & Chen, Y. (2011). Integrated and diffusion-based mico-injectors for open access cell assays. Lab Chip 11(15), 26122617.CrossRefGoogle ScholarPubMed
Lo, J.F., Sinkala, E. & Eddington, D.T. (2010). Oxygen gradients for open well cellular cultures via microfluidic substrates. Lab Chip 10(18), 23942401.CrossRefGoogle ScholarPubMed
Lovchik, R.D., Bianco, F., Tonna, N., Ruiz, A., Matteoli, M. & Delamarche, E. (2010). Overflow microfluidic networks for open and closed cell cultures on chip. Anal Chem 82(9), 39363942.CrossRefGoogle ScholarPubMed
Melin, J. & Quake, S.R. (2007). Microfluidic large-scale integration: The evolution of design rules for biological automation. Annu Rev Biophys Biomolec Struct 36, 213231.CrossRefGoogle ScholarPubMed
Muller-Taubenberger, A. (2006). Application of fluorescent protein tags as reporters in live-cell imaging studies. Meth Mol Biol 346, 229246.Google ScholarPubMed
Parent, C.A., Blacklock, B.J., Froehlich, W.M., Murphy, D.B. & Devreotes, P.N. (1998). G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95(1), 8191.CrossRefGoogle Scholar
Postma, M. & van Haastert, P. (2009). Mathematics of experimentally generated chemoattractant gradients. Meth Mol Biol 571, 473488.CrossRefGoogle ScholarPubMed
Raja, W.K., Gligorijevic, B., Wyckoff, J., Condeelis, J.S. & Castracane, J. (2010). A new chemotaxis device for cell migration studies. Integr Biol 2(11-12), 696706.CrossRefGoogle ScholarPubMed
Sasaki, A., Chun, C., Takeda, K. & Firtel, R. (2004). Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol 167(3), 505518.CrossRefGoogle Scholar
Sasaki, A.T. & Firtel, R.A. (2009). Spatiotemporal regulation of Ras-GTPases during chemotaxis. Meth Mol Biol 571, 333348.CrossRefGoogle ScholarPubMed
Taylor, A., Blurton-Jones, M., Woo Rhee, S., Cribbs, D.H., Cotman, C.W. & Li Jeon, N. (2005). A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8), 599605.CrossRefGoogle ScholarPubMed
Walker, G.M., Sai, J., Richmond, A., Stremler, M., Chung, C.Y. & Wikswo, J.P. (2005). Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6), 611618.CrossRefGoogle Scholar
Weigert, R., Sramkova, M., Parente, L., Amornphimoltham, P. & Masedunskas, A. (2010). Intravital microscopy as a novel tool to study cell biology in live animals. Histochem Cell Biol 133(5), 481491.CrossRefGoogle Scholar
White, Y.V., Li, X., Sikorski, Z., Davis, L.M. & Hofmeister, W. (2008). Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2 . Optics Exp 16, 1441114420.CrossRefGoogle ScholarPubMed
Whitesides, G.M. (2006). The origins and the future of microfluidics. Nature 442(7101), 368373.CrossRefGoogle ScholarPubMed
Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U.H., Deryugina, E.I., Strongin, A.Y., Brocker, E.B. & Friedl, P. (2003). Compensation mechanism in tumor cell migration: Mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2), 267277.CrossRefGoogle ScholarPubMed
Wu, X., Lee, V.C., Chevalier, E. & Hwang, S.T. (2009). Chemokine receptors as targets for cancer therapy. Curr Pharm Des 15(7), 742757.CrossRefGoogle ScholarPubMed
Young, E.W.K. & Beebe, D.J. (2010). Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev 39, 10361048.CrossRefGoogle ScholarPubMed
Zalloum, O.H.Y., Parrish, M., Terekhov, A. & Hofmeister, W. (2010). An amplified femtosecond laser system for material micro-nanostructuring with an integrated Raman microscope. Rev Sci Instrum 81(5), 053906. CrossRefGoogle ScholarPubMed
Zicha, D., Dunn, G. & Jones, G. (1997). Analyzing chemotaxis using the Dunn direct-viewing chamber. Methods Mol Biol 75, 449457.Google ScholarPubMed
Zigmond, S. (1977). Ability of polymorphonuclear leudocytes to orient in gradients of chemotactic factors. J Cell Biol 75(2), 606616.CrossRefGoogle Scholar
Supplementary material: PDF

Wright Supplementary Material

Supplementary Figure 1

Download Wright Supplementary Material(PDF)
PDF 60.4 KB

Wright Supplementary Movie 1

Supplementary Movie 1. D. discoideum cells directionally migrating toward the cAMP source in the four-sided bulk silica device. The cAMP gradient generating port is labeled with an arrow. Total time of video is 80 min. Frames were acquired every 15 s.

Download Wright Supplementary Movie 1(Video)
Video 24.1 MB

Wright Supplementary Movie 2

Supplementary Movie 2. D. discoideum cells directionally migrating toward and into the cAMP gradient generating ports in the first coverslip device. The gradient generating ports are labeled with white circles. The cells that enter the gradient generating ports are marked with a bold white circle just before the cells enter the port. The movie is 20 min in duration, and frames were acquired every 15 s.

Download Wright Supplementary Movie 2(Video)
Video 5.2 MB

Wright Supplementary Movie 3

Supplementary Movie 3. D. discoideum cells migrate directionally toward and into the cAMP gradient generating ports in the second three-port cover slip device. The video is 80 min in duration, and frames were acquired every 15 s.

Download Wright Supplementary Movie 3(Video)
Video 3.6 MB
Supplementary material: PDF

Wright Supplementary Material

Supplementary Figure 2

Download Wright Supplementary Material(PDF)
PDF 112.5 KB