Skip to main content Accessibility help
×
Home

New Atom Probe Tomography Reconstruction Algorithm for Multilayered Samples: Beyond the Hemispherical Constraint

Published online by Cambridge University Press:  22 March 2017


Nicolas Rolland
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen-UMR CNRS 6634-Normandie Université, 76801 St Etienne du Rouvray, France
François Vurpillot
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen-UMR CNRS 6634-Normandie Université, 76801 St Etienne du Rouvray, France
Sébastien Duguay
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen-UMR CNRS 6634-Normandie Université, 76801 St Etienne du Rouvray, France
Baishakhi Mazumder
Affiliation:
Department of Material Design and Innovation, University at Buffalo, Buffalo, NY 14260, USA
James S. Speck
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, USA
Didier Blavette
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen-UMR CNRS 6634-Normandie Université, 76801 St Etienne du Rouvray, France
Corresponding

Abstract

Accuracy of atom probe tomography measurements is strongly degraded by the presence of phases that have different evaporation fields. In particular, when there are perpendicular interfaces to the tip axis in the specimen, layers thicknesses are systematically biased and the resolution is degraded near the interfaces. Based on an analytical model of field evaporated emitter end-form, a new algorithm dedicated to the 3D reconstruction of multilayered samples was developed. Simulations of field evaporation of bilayer were performed to evaluate the effectiveness of the new algorithm. Compared to the standard state-of-the-art reconstruction methods, the present approach provides much more accurate analyzed volume, and the resolution is clearly improved near the interface. The ability of the algorithm to handle experimental data was also demonstrated. It is shown that the standard algorithm applied to the same data can commit an error on the layers thicknesses up to a factor 2. This new method is not constrained by the classical hemispherical specimen shape assumption.


Type
Reconstruction
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87, 298304.CrossRefGoogle Scholar
Beinke, D., Oberdorfer, C. & Schmitz, G. (2016). Towards an accurate volume reconstruction in atom probe tomography. Ultramicroscopy 165, 3441.CrossRefGoogle ScholarPubMed
Blavette, D., Sarrau, J.M., Bostel, A. & Gallot, J. (1982). Direction et distance d’analyse à la sonde atomique. Revue de Physique Appliquée 17, 435440.CrossRefGoogle Scholar
Delaunay, C. (1841). Sur la surface de révolution dont la courbure moyenne est constante. Journal de Mathématiques Pures et Appliquées 6, 309314.Google Scholar
Gault, B., Haley, D., de Geuser, F., Moody, M.P., Marquis, E.A., Larson, D.J. & Geiser, B.P. (2011a). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448457.CrossRefGoogle ScholarPubMed
Gault, B., Loi, S.T., Araullo-Peters, V.J., Stephenson, L.T., Moody, M.P., Shrestha, S.L., Marceau, R.K.W., Yao, L., Cairney, J.M. & Ringer, S.P. (2011b). Dynamic reconstruction for atom probe tomography. Ultramicroscopy 111, 16191624.CrossRefGoogle ScholarPubMed
Geiser, B.P., Larson, D.J., Oltman, E., Gerstl, S., Reinhard, D., Kelly, T.F. & Prosa, T.J. (2009). Wide-field-of-view atom probe reconstruction. Microsc Microanal 15, 292293.CrossRefGoogle Scholar
Gomer, R. (1961). Field Ionization and Field Emission. Cambridge, MA: Harvard, University Press.Google Scholar
Haley, D., Moody, M.P. & Smith, G.D.W. (2013). Level set methods for modelling field evaporation in atom probe. Microsc Microanal 19, 17091717.CrossRefGoogle ScholarPubMed
Larson, D.J., Geiser, B.P., Prosa, T.J., Gerstl, S.S.A., Reinhard, D.A. & Kelly, T.F. (2011). Improvements in planar feature reconstructions in atom probe tomography. J Microsc 243, 1530.CrossRefGoogle ScholarPubMed
Larson, D.J., Geiser, B.P., Prosa, T.J. & Kelly, T.F. (2012). On the use of simulated field-evaporated specimen apex shapes in atom probe tomography data reconstruction. Microsc Microanal 18, 953963.CrossRefGoogle Scholar
Marquis, E.A., Geiser, B.P., Prosa, T.J. & Larson, D.J. (2011). Evolution of tip shape during field evaporation of complex multilayer structures. J Microsc 241, 225233.CrossRefGoogle ScholarPubMed
Oberdorfer, C., Eich, S.M., Lütkemeyer, M. & Schmitz, G. (2015). Applications of a versatile modelling approach to 3D atom probe simulations. Ultramicroscopy 159, Part 2, 184194.CrossRefGoogle Scholar
Oberdorfer, C., Eich, S.M. & Schmitz, G. (2013). A full-scale simulation approach for atom probe tomography. Ultramicroscopy 128, 5567.CrossRefGoogle ScholarPubMed
Plateau, J. (1873). Statique Experimentale et Theorique des Liquides aux Seules Forces Moleculaires. Paris: Gauthier Villars.Google Scholar
Rolland, N., Vurpillot, F., Duguay, S. & Blavette, D. (2015a). Dynamic evolution and fracture of multilayer field emitters in atom probe tomography: A new interpretation. Eur Phys J Appl Phys 72, 21001.CrossRefGoogle Scholar
Rolland, N., Vurpillot, F., Duguay, S. & Blavette, D. (2015b). A meshless algorithm to model field evaporation in atom probe tomography. Microsc Microanal 21, 16491656.CrossRefGoogle ScholarPubMed
Suram, S.K. & Rajan, K. (2013). Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation. Ultramicroscopy 132, 136142.CrossRefGoogle ScholarPubMed
Vurpillot, F., Gaillard, A., Da Costa, G. & Deconihout, B. (2013a). A model to predict image formation in atom probe tomography. Ultramicroscopy 132, 152157.CrossRefGoogle ScholarPubMed
Vurpillot, F., Gault, B., Geiser, B.P. & Larson, D.J. (2013b). Reconstructing atom probe data: A review. Ultramicroscopy 132, 1930.CrossRefGoogle ScholarPubMed
Vurpillot, F., Larson, D. & Cerezo, A. (2004). Improvement of multilayer analyses with a three-dimensional atom probe. Surf Interface Anal 36, 552558.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 13
Total number of PDF views: 163 *
View data table for this chart

* Views captured on Cambridge Core between 22nd March 2017 - 3rd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-cqrxk Total loading time: 0.291 Render date: 2020-12-03T02:43:58.778Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 02:06:29 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

New Atom Probe Tomography Reconstruction Algorithm for Multilayered Samples: Beyond the Hemispherical Constraint
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

New Atom Probe Tomography Reconstruction Algorithm for Multilayered Samples: Beyond the Hemispherical Constraint
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

New Atom Probe Tomography Reconstruction Algorithm for Multilayered Samples: Beyond the Hemispherical Constraint
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *