Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-vl2kb Total loading time: 0.393 Render date: 2021-12-07T12:54:42.237Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Improved Focused Ion Beam Target Preparation of (S)TEM Specimen—A Method for Obtaining Ultrathin Lamellae

Published online by Cambridge University Press:  21 March 2012

Lorenz Lechner*
Affiliation:
Center for Electron Microscopy, Materials Science Group, Ulm University, Ulm, Germany
Johannes Biskupek
Affiliation:
Center for Electron Microscopy, Materials Science Group, Ulm University, Ulm, Germany
Ute Kaiser
Affiliation:
Center for Electron Microscopy, Materials Science Group, Ulm University, Ulm, Germany
*
Corresponding author. E-mail: lechner@nts.zeiss.com

Abstract

Specimen quality is vital to (scanning) transmission electron microscopy (TEM) investigations. In particular, thin specimens are required to obtain excellent high-resolution TEM images. Conventional focused ion beam (FIB) preparation methods cannot be employed to reliably create high quality specimens much thinner than 20 nm. We have developed a method for in situ target preparation of ultrathin TEM lamellae by FIB milling. With this method we are able to routinely obtain large area lamellae with coplanar faces, thinner than 10 nm. The resulting specimens are suitable for low kV TEM as well as scanning TEM. We have demonstrated atomic resolution by Cs-corrected high-resolution TEM at 20 kV on a FIB milled Si specimen only 4 nm thick; its amorphous layer measuring less than 1 nm in total.

Type
Techniques and Software Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Giannuzzi, L., Prenitzer, B. & Kempshall, B. (2005). Ion-solid interactions. In Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice, Giannuzzi, L. & Stevie, F. (Eds.), p. 358. New York: Springer.CrossRefGoogle Scholar
Kaiser, U., Biskupek, J., Meyer, J., Leschner, J., Lechner, L., Rose, H., Stöger-Pollach, M., Khlobystov, A., Hartel, P., Müller, H., Eyhusen, S. & Benner, G. (2011). Transmission electron microscopy at 20 kV for imaging and spectroscopy. Ultramicroscopy 111, 12391246.CrossRefGoogle ScholarPubMed
Kang, H.-J., Kim, J., Oh, J., Back, T. & Kim, H. (2010). Ultra-thin TEM sample preparation with advanced backside FIB milling method. Microsc Microanal 16, 170171.CrossRefGoogle Scholar
Langford, R. & Clinton, C. (2004). In situ lift-out using a FIB-SEM system. Micron 35, 607611.CrossRefGoogle ScholarPubMed
Langford, R., Petford-Long, A. & Gnauck, P. (2002). Focused ion beam based sample preparation techniques. Microsc Microanal 8, 4647.Google Scholar
Leer, B. & Giannuzzi, L.A. (2008). Advances in TEM sample preparation using a focused ion beam. Microsc Microanal 14, 380381.CrossRefGoogle Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T. & Michael, J. (2007). TEM sample preparation and FIB-induced damage. MRS Bull 32, 400407.CrossRefGoogle Scholar
McCaffrey, J.P. & Barna, A. (1997). Preparation of cross-sectional TEM samples for low-angle ion milling. Microsc Res Techniq 36, 362367.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Rose, H. (2008). History of direct aberration correction. In Advances in Imaging and Electron Physics, vol. 153, pp. 339. New York: Elsevier.Google Scholar
Salzer, R., Graff, A., Simon, M. & Altmann, F. (2009). Standard free thickness determination of thin TEM samples via backscatter electron image correlation. Microsc Microanal 15, 340341.CrossRefGoogle Scholar
Walck, S. (1996). A simplified method for modifying TEM copper grids for use with the small angle cleavage technique. Microsc Today 4(4), 12.CrossRefGoogle Scholar
Wunderer, T., Lipski, F., Hertkorn, J., Schwaiger, S. & Scholz, F. (2009). Fabrication of 3D InGaN/GaN structures providing semipolar GaN planes for efficient green light emission. Phys Status Sol C 6, S490S493.CrossRefGoogle Scholar
17
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Improved Focused Ion Beam Target Preparation of (S)TEM Specimen—A Method for Obtaining Ultrathin Lamellae
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Improved Focused Ion Beam Target Preparation of (S)TEM Specimen—A Method for Obtaining Ultrathin Lamellae
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Improved Focused Ion Beam Target Preparation of (S)TEM Specimen—A Method for Obtaining Ultrathin Lamellae
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *