Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-dfw9g Total loading time: 0.337 Render date: 2022-08-09T14:52:18.701Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Elemental Distribution in Multilayer Systems by Laser-Assisted Atom Probe Tomography with Various Analysis Directions

Published online by Cambridge University Press:  16 September 2015

Masaki Kubota
Affiliation:
TDK Corporation, 543 Otai, Saku-shi, Nagano 385-8555, Japan
Hisashi Takamizawa
Affiliation:
The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan
Yasuo Shimizu
Affiliation:
The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan
Yasuko Nozawa
Affiliation:
The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan
Naoki Ebisawa
Affiliation:
The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan
Takeshi Toyama
Affiliation:
The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan
Yoichi Ishida
Affiliation:
TDK Corporation, 543 Otai, Saku-shi, Nagano 385-8555, Japan
Katsuaki Yanagiuchi*
Affiliation:
TDK Corporation, 543 Otai, Saku-shi, Nagano 385-8555, Japan
Koji Inoue
Affiliation:
The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan
Yasuyoshi Nagai
Affiliation:
The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan
*
*Corresponding author. kyanagi@jp.tdk.com

Abstract

Elemental distributions in a magnetic multilayer system with the structure Si substrate/Ta/NiFe/Ru/CoFeB/Ru/NiFe were studied using atom probe tomography (APT) along different analysis directions. The distributions of Ru and B atoms, which require a high evaporation field, were strongly influenced by the APT analysis direction. In particular, B in the CoFeB layer appeared near the interface with the lower Ru layer when the analysis was anti-parallel to the film growth direction, while B atoms were observed at the other side of the CoFeB layer when the analysis was parallel to the film growth direction. Moreover, when the analysis was perpendicular to the film growth direction, a homogenous distribution of B atoms was found within the CoFeB layer. Owing to this B behavior, the underlying Ru layer was affected in both of these analysis directions. In APT measurements of such a multilayer system composed of a stack of different evaporation field materials, evaluation of the elemental distribution around interfaces should be performed from more than one analysis direction.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bae, J.Y., Lim, W.C., Kim, H.J., Lee, T.D., Kim, K.W. & Kim, T.W. (2006). Compositional change of MgO barrier and interface in CoFeB/MgO/CoFeB tunnel junction after annealing. J Appl Phys 99, 08T316.CrossRefGoogle Scholar
Bouchikhaoui, H., Stender, P., Akemeier, D., Baither, D., Hono, K., Hütten, A. & Schmitz, G. (2013). On the role of Ta cap in the recrystallization process of CoFeB layers. Appl Phys Lett 103, 142412.CrossRefGoogle Scholar
Brandon, D.G. (1964). The structure of field-evaporated surfaces. Surf Sci 3, 118.CrossRefGoogle Scholar
Butler, W.H., Zhang, X.-G., Schulthess, T.C. & MacLaren, J.M. (2001). Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys Rev B 63, 054416.CrossRefGoogle Scholar
Cha, J.J., Read, J.C., Buhrman, R.A. & Muller, D.A. (2007). Spatially resolved electron energy-loss spectroscopy of electron-beam grown and sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 91, 062516.CrossRefGoogle Scholar
Djayaprawira, D.D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., Watanabe, N., Yuasa, S., Suzuki, Y. & Ando, K. (2005). 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 86, 092502.CrossRefGoogle Scholar
Gault, B., Müller, M., La Fontaine, A., Moody, M.P., Shariq, A., Cerezo, A., Ringer, S.P. & Smith, G.D.W. (2010). Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J Appl Phys 108, 044904.CrossRefGoogle Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705.CrossRefGoogle Scholar
Geiser, B.P., Larson, D.J., Oltman, E., Gerstl, S.S.A., Reinhard, D.A., Kelly, T.F. & Prosa, T.J. (2009). Wide-field-of-view atom probe reconstruction. Microsc Microanal 15, 292293.CrossRefGoogle Scholar
Hono, K., Ohkubo, T., Chen, Y.M., Kodzuka, M., Oh-ishi, K., Sepehri-Amin, H., Li, F., Kinno, T., Tomiya, S. & Kanitani, Y. (2011). Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy 111, 576583.CrossRefGoogle ScholarPubMed
Ibusuki, T., Miyajima, T., Umehara, S., Eguchi, S. & Sato, M. (2009). Lower-temperature crystallization of CoFeB in MgO magnetic tunnel junctions by using Ti capping layer. Appl Phys Lett 94, 062509.CrossRefGoogle Scholar
Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanai, S., Hayakawa, J., Matsukura, F. & Ohno, H. (2010). A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat Mater 9, 721724.CrossRefGoogle ScholarPubMed
Inoue, K., Yano, F., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y. & Hasegawa, M. (2009). Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109, 14791484.CrossRefGoogle ScholarPubMed
Kagami, T., Kuwashima, T., Miura, S., Uesugi, T., Barada, K., Ohta, N., Kasahara, N., Sato, K., Kanaya, T., Kiyono, H., Hachisuka, N., Saruki, S., Inage, K., Takahashi, N. & Terunuma, K. (2006). A performance study of next generation’s TMR heads beyond 200 Gb/in2 . IEEE Trans Magn 42, 9396.CrossRefGoogle Scholar
Kambham, A.K., Mody, J., Gilbert, M., Koelling, S. & Vandervorst, W. (2011). Atom-probe for FinFET dopant characterization. Ultramicroscopy 111, 535539.CrossRefGoogle ScholarPubMed
Karthik, S.V., Takahashi, Y.K., Ohkubo, T., Hono, K., Gan, H.D., Ikeda, S. & Ohno, H. (2012). Transmission electron microscopy study on the effect of various capping layers on CoFeB/MgO/CoFeB pseudo spin valves annealed at different temperatures. J Appl Phys 111, 083922.CrossRefGoogle Scholar
Karthik, S.V., Takahashi, Y.K., Ohkubo, T., Hono, K., Ikeda, S. & Ohno, H. (2009). Transmission electron microscopy investigation of CoFeB/MgO/CoFeB pseudospin valves annealed at different temperatures. J Appl Phys 106, 023920.CrossRefGoogle Scholar
Kelly, T.F. & Miller, M.K. (2007). Atom probe tomography. Rev Sci Instrum 78, 031101.CrossRefGoogle ScholarPubMed
Kim, D.J., Bae, J.Y., Lim, W.C., Kim, K.W. & Lee, T.D. (2007). Structural analysis of the CoFeB thin film in Ru/CoFeB and MgO/CoFeB layers. J Appl Phys 101, 09B505.CrossRefGoogle Scholar
Koelling, S., Innocenti, N., Hellings, G., Gilbert, M., Kambham, A.K., De Meyer, K. & Vandervorst, W. (2011). Characteristics of cross-sectional atom probe analysis on semiconductor structures. Ultramicroscopy 111, 540545.CrossRefGoogle ScholarPubMed
Larson, D.J., Foord, D.T., Petford-Long, A.K., Cerezo, A. & Smith, G.D.W. (1999 a). Focused ion-beam specimen preparation for atom probe field-ion microscopy characterization of multilayer film structures. Nanotechnology 10, 4550.CrossRefGoogle Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999 b). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.CrossRefGoogle Scholar
Larson, D.J., Gault, B., Geiser, B.P., De Geuser, F. & Vurpillot, F. (2013). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mater Sci 17, 236.CrossRefGoogle Scholar
Larson, D.J., Geiser, B.P., Prosa, T.J., Gerstl, S.S.A., Reinhard, D.A. & Kelly, T.F. (2010). Improvements in planar feature reconstructions in atom probe tomography. J Microsc 243, 1530.CrossRefGoogle ScholarPubMed
Larson, D.J., Geiser, B.P., Prosa, T.J. & Kelly, T.F. (2012). On the use of simulated field-evaporated specimen apex shapes in atom probe tomography data reconstruction. Microsc Microanal 18, 953963.CrossRefGoogle ScholarPubMed
Larson, D.J., Lawrence, D., Lefebvre, W., Olson, D., Prosa, T.J., Reinhard, D.A., Ulfig, R.M., Clifton, P.H., Bunton, J.H., Lenz, D., Olson, J.D., Renaud, L., Martin, I. & Kelly, T.F. (2011 a). Toward atom probe tomography of microelectronic devices. J Phys Conf Ser 326, 012030.CrossRefGoogle Scholar
Larson, D.J., Marquis, E.A., Rice, P.M., Prosa, T.J., Geiser, B.P., Yang, S.-H. & Parkin, S.S.P. (2011 b). Manganese diffusion in annealed magnetic tunnel junctions with MgO tunnel barriers. Scripta Mater 64, 673.CrossRefGoogle Scholar
Larson, D.J., Prosa, T.J., Geiser, B.P. & Egelhoff, W.F. Jr. (2011 c). Effect of analysis direction on the measurement of interfacial mixing in thin metal layers with atom probe tomography. Ultramicroscopy 111, 506511.CrossRefGoogle ScholarPubMed
Marquis, E., Geiser, B.P., Prosa, T.J. & Larson, D.J. (2011). Evolution of tip shape during field evaporation of complex multilayer structures. J Micros 241, 225.CrossRefGoogle ScholarPubMed
Mathon, J. & Umerski, A. (2001). Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys Rev B 63, 220403.CrossRefGoogle Scholar
Miller, M.K. (2000). Prediction of low temperature evaporation fields and charge states for the element. In Atom Probe Tomography: Analysis at the Atomic Level, pp. 222-223. New York, NY: Kluwer Academic/Plenum Publishers.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy, p. 83. New York, NY: Oxford Science Press Inc.Google Scholar
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428436.CrossRefGoogle ScholarPubMed
Miyajima, T., Ibusuki, T., Umehara, S., Sato, M., Eguchi, S., Tsukada, M. & Kataoka, Y. (2009). Transmission electron microscopy study on the crystallization and boron distribution of CoFeB/MgO/CoFeB magnetic tunnel junctions with various capping layers. Appl Phys Lett 94, 122501.CrossRefGoogle Scholar
Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M. & Yang, S.-H. (2004). Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater 3, 862867.CrossRefGoogle ScholarPubMed
Pinitsoontorn, S., Cerezo, A., Petford-Long, A.K., Mauri, D., Folks, L. & Carey, M.J. (2008). Three-dimensional atom probe investigation of boron distribution in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 93, 071901.CrossRefGoogle Scholar
Prosa, T.J., Lawrence, D., Olson, D., Larson, D.J. & Marquis, E.A. (2009). Backside lift-out specimen preparation: Reversing the analysis direction in atom probe tomography. Microsc Microanal 15(Suppl 2), 298299.CrossRefGoogle Scholar
Schreiber, D.K., Choi, Y.-S., Liu, Y., Chiaramonti, A.N., Seidman, D.N. & Petford-Long, A.K. (2011). Effects of elemental distributions on the behavior of MgO-based magnetic tunnel junctions. J Appl Phys 109, 103909.CrossRefGoogle Scholar
Shimizu, Y., Kawamura, Y., Uematsu, M., Tomita, M., Kinno, T., Okada, N., Kato, M., Uchida, H., Takahashi, M., Ito, H., Ishikawa, H., Ohji, Y., Takamizawa, H., Nagai, Y. & Itoh, K.M. (2011). Depth and lateral resolution of laser-assisted atom probe microscopy of silicon revealed by isotopic heterostructures. J Appl Phys 109, 036102.CrossRefGoogle Scholar
Takamizawa, H., Shimizu, Y., Inoue, K., Toyama, T., Okada, N., Kato, M., Uchida, H., Yano, F., Nishida, A., Mogami, T. & Nagai, Y. (2011). Origin of characteristic variability in metal-oxide-semiconductor field-effect transistors revealed by three-dimensional atom imaging. Appl Phys Lett 99, 133502.CrossRefGoogle Scholar
Takamizawa, H., Shimizu, Y., Nozawa, Y., Toyama, T., Morita, H., Yabuuchi, Y., Ogura, M. & Nagai, Y. (2012). Dopant characterization in self-regulatory plasma doped fin field-effect transistors by atom probe tomography. Appl Phys Lett 100, 093502.CrossRefGoogle Scholar
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70, 211233.CrossRefGoogle Scholar
Vurpillot, F., Cerezo, A., Blavette, D. & Larson, D.J. (2004). Modeling image distortions in 3DAP. Microsc Microanal 10, 384390.CrossRefGoogle ScholarPubMed
Vurpillot, F., Gault, B., Geiser, B.P. & Larson, D.J. (2013). Reconstructing atom probe data: A review. Ultramicroscopy 132, 19.CrossRefGoogle ScholarPubMed
Yuasa, S., Fukushima, A., Nagahama, T., Ando, K. & Suzuki, Y. (2004 a). High tunnel magnetoresistance at room temperature in fully epitaxial Fe/MgO/Fe tunnel junctions due to coherent spin-polarized tunneling. Jpn J Appl Phys 43, L588L590.CrossRefGoogle Scholar
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. (2004 b). Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater 3, 868871.CrossRefGoogle ScholarPubMed
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Elemental Distribution in Multilayer Systems by Laser-Assisted Atom Probe Tomography with Various Analysis Directions
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Elemental Distribution in Multilayer Systems by Laser-Assisted Atom Probe Tomography with Various Analysis Directions
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Elemental Distribution in Multilayer Systems by Laser-Assisted Atom Probe Tomography with Various Analysis Directions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *