Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-08T04:54:17.223Z Has data issue: false hasContentIssue false

Cytotoxicity of Experimental Resin Composites on Mesenchymal Stem Cells Isolated from Two Oral Sources

Published online by Cambridge University Press:  09 September 2016

Alexandra Roman*
Affiliation:
Department of Periodontology, Iuliu Haţieganu University of Medicine and Pharmacy, 15 V. Babeş St., 400012 Cluj-Napoca, Romania
Emöke Páll
Affiliation:
Department of Veterinary Reproduction, Obstetrics and Gynecology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
Mărioara Moldovan
Affiliation:
Raluca Ripan Institute for Research in Chemistry, Babes-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
Darian Rusu
Affiliation:
Periodontology Department, Victor Babes University of Medicine and Pharmacy, Bv. Revolutiei nr.9, 300014 Timisoara, Romania
Olga Şoriţău
Affiliation:
Laboratory of Tumor Biology and Radiobiology, Prof. Dr. Ion Chiricuţă Oncology Institute, 34-36 Republicii, 400015 Cluj-Napoca, Romania
Dana Feştilă
Affiliation:
Department of Orthodontics, Iuliu Haţieganu University of Medicine and Pharmacy, 33 Motilor St., 400001 Cluj-Napoca, Romania
Mihaela Lupşe
Affiliation:
Department of Infectious Diseases, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 23 Iuliu Moldovan St., 400349 Cluj-Napoca, Romania
*
*Corresponding author. veve_alexandra@yahoo.com
Get access

Abstract

Resin composite materials that are used to restore tooth cervical lesions associated with gingival recessions can hamper healing after root coverage surgeries. This study evaluates the in vitro cytotoxic effect of five resin composites (two commercial and three experimental) on oral mesenchymal stem cells (MSCs) and the persistence of stemness properties in high passage MSCs. Sorption and solubility tests were made for all materials. MSCs were isolated from re-entry palatal and periodontal granulation tissues and were characterized and cultured on composite discs. Cytotoxicity of the materials was evaluated by the Alamar Blue viability test, by Paul Karl Horan (PKH) labeling, and by immunocytochemical staining for actin. Water and saliva sorption and solubility data revealed that two of the experimental materials behaved comparable with the marketed resin composites. The Alamar Blue viability test shows that both cell lines grew well on composite discs that seemed to induce no apparent toxic effects. No signs of disruption of cytoskeleton organization was seen. Experimental resin composites can be recommended for further investigation for obtaining approval for use. The standard minimal criteria were fulfilled for high passage MSCs. Palatal tissue regains its regenerative properties in terms of MSC presence in the re-entry area after 6 months of healing.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

All the authors have equally contributed to the present study and can be regarded, therefore, as being main authors.

References

About, I., Camps, J., Mitsiadis, T.A., Bottero, M.J., Butler, W. & Franquin, J.C. (2002). Influence of resinous monomers on the differentiation in vitro of human pulp cells into odontoblasts. J Biomed Mater Res 63, 418423.CrossRefGoogle ScholarPubMed
ADA Division of Science & ADA Council on Scientific Affairs (2003). Resin-based composites. J Am Dent Assoc 134, 510512.CrossRefGoogle Scholar
Albers, H.F. (2001). Tooth-Colored Restoratives: Principles and Techniques, 9th ed. London, UK: BC Decker Inc. pp. 1–17, 81–110, 111–119.Google Scholar
Alongi, D.J., Yamaza, T., Song, Y., Fouad, A.F., Romberg, E.E., Shi, S., Tuan, R.S. & Huang, G.T. (2010). Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5, 617631.CrossRefGoogle ScholarPubMed
Bakopoulou, A., Leyhausen, G., Volk, J., Tsiftsoglou, A., Garefis, P., Koidis, P. & Geurtsen, W. (2011). Effects of HEMA and TEDGMA on the in vitro odontogenic differentiation potential of human pulp stem/progenitor cells derived from deciduous teeth. Dent Mater 27, 608617.CrossRefGoogle ScholarPubMed
Bakopoulou, A.L., Leyhausen, G., Volk, J., Koidis, P. & Geurtsen, W. (2012). Effects of resinous monomers on the odontogenic differentiation and mineralization potential of highly proliferative and clonogenic cultured apical papilla stem cells. Dent Mater 28, 327339.CrossRefGoogle ScholarPubMed
Caughman, W.F., Caughman, G.B., Shiflett, R.A., Rueggeberg, F. & Schuster, G.S. (1991). Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials 12, 737740.CrossRefGoogle ScholarPubMed
Chang, M.C., Lin, L.D., Chuang, F.H., Chan, C.P., Wang, T.M., Lee, J.J., Jeng, P.Y., Tseng, W.Y., Lin, H.J. & Jeng, J.H. (2012). Carboxylesterase expression in human dental pulp cells: Role in regulation of BisGMA-induced prostanoid production and cytotoxicity. Acta Biomater 8, 13801387.CrossRefGoogle ScholarPubMed
Chen, M.H. (2010). Update on dental nanocomposites. J Dent Res 89, 549560.CrossRefGoogle ScholarPubMed
Costa, C.A., Vaerten, M.A., Edwards, C.A. & Hanks, C.T. (1999). Cytotoxic effects of current dental adhesive systems on immortalized odontoblast cell line MDPC-23. Dent Mater 15, 434441.CrossRefGoogle ScholarPubMed
Deng, C., Weng, J., Duan, K., Yao, N., Yang, X.B., Zhou, S.B., Lu, X., Qu, S.X., Wan, J.X., Feng, B. & Li, X.H. (2010). Preparation and mechanical property of poly(ε-caprolactone)-matrix composites containing nano-apatite fillers modified by silane coupling agents. J Mater Sci Mater Med 21, 30593064.CrossRefGoogle ScholarPubMed
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.J. & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315317.CrossRefGoogle ScholarPubMed
Duggal, M.S.L., Chawla, H.S. & Curzon, M.E. (1991). A study of the relationship between trace elements in saliva and dental caries in children. Arch Oral Biol 36, 881884.CrossRefGoogle ScholarPubMed
Ferracane, J.L. (1994). Elution of leachable components from composites. J Oral Rehabil 21, 441452.CrossRefGoogle ScholarPubMed
Fischer, R.S. & Fowler, V.M. (2015). Thematic minireview series: The state of the cytoskeleton in 2015. J Biol Chem 290, 1713317136.CrossRefGoogle ScholarPubMed
Geurtsen, W. (2000). Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 11, 333355.CrossRefGoogle ScholarPubMed
Goldberg, M. (2008). In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin Oral Investig 12, 18.CrossRefGoogle ScholarPubMed
Golub, E.E., Harrison, G., Taylor, A.G., Camper, S. & Shapiro, I.M. (1992). The role of alkaline phosphatase in cartilage mineralization. Bone Miner 17, 273278.CrossRefGoogle ScholarPubMed
Grosgogeat, B.L., Reclaru, L., Lissac, M. & Dalard, F. (1999). Measurement and evaluation of galvanic corrosion between titanium/Ti6A14V implants and dental alloys by electrochemical techniques and Auger spectrometry. Biomaterials 20, 933941.CrossRefGoogle ScholarPubMed
Hahnel, S., Dowling, A.H., El-Safty, S. & Fleming, G.J. (2012). The influence of monomeric resin and filler characteristics on the performance of experimental resin-based composites (RBCs) derived from a commercial formulation. Dent Mater 28, 416423.CrossRefGoogle ScholarPubMed
Hürzeler, M.B. & Weng, D. (1999). A single-incision technique to harvest subepithelial connective tissue grafts from the palate. Int J Periodontics Restorative Dent 19, 279287.Google ScholarPubMed
Ilie, N. & Hickel, R. (2009). Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13, 427438.CrossRefGoogle ScholarPubMed
Krifka, S., Spagnuolo, G., Schmalz, G. & Schweikl, H. (2013). A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 34, 45554563.CrossRefGoogle ScholarPubMed
Laser-Azogui, A., Kornreich, M., Malka-Gibor, E. & Beck, R. (2015). Neurofilament assembly and function during neuronal development. Curr Opin Cell Biol 32, 92101.CrossRefGoogle Scholar
Latif, N., Sarathchandra, P., Thomas, P.S., Antoniw, J., Batten, P., Chester, A.H., Taylor, P.M. & Yacoub, M.H. (2007). Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J Heart Valve Dis 16, 5666.Google ScholarPubMed
Liao, J., Al Shahrani, M., Al-Habib, M., Tanaka, T. & Huang, G.T. (2011). Cells isolated from inflamed periapical tissue express mesenchymal stem cell markers and are highly osteogenic. J Endod 37, 12171224.CrossRefGoogle ScholarPubMed
Merry, K., Dodds, R., Littlewood, A. & Gowen, M. (1993). Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. J Cell Sci 104, 10131020.CrossRefGoogle ScholarPubMed
Miller, P.D. Jr. (1985). A classification of marginal tissue recession. Int J Periodontics Restorative Dent 5, 813.Google ScholarPubMed
Mitra, S.B.L., Wu, D. & Holmes, B.N. (2003). An application of nanotechnology in advanced dental materials. J Am Dent Assoc 134, 13821390.CrossRefGoogle ScholarPubMed
Modena, K.C.L., Casas-Apayco, L.C., Atta, M.T., Costa, C.A., Hebling, J., Sipert, C.R., Navarro, M.F. & Santos, C.F. (2009). Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci 17, 544554.CrossRefGoogle ScholarPubMed
Murray, P.E., Hafez, A.A., Windsor, L.J., Smith, A.J. & Cox, C.F. (2002). Comparison of pulp responses following restoration of exposed and non-exposed cavities. J Dent 30, 213222.CrossRefGoogle ScholarPubMed
Orciani, M., Mariggiò, M.A., Morabito, C., Di Benedetto, G. & Di Primio, R. (2010). Functional characterization of calcium-signaling pathways of human skin-derived mesenchymal stem cells. Skin Pharmacol Physiol 23, 124132.CrossRefGoogle ScholarPubMed
Páll, E., Florea, A., Soriţău, O., Cenariu, M., Petruţiu, A.S. & Roman, A. (2015). Comparative assessment of oral mesenchymal stem cells isolated from healthy and diseased tissues. Microsc Microanal 21, 12491263.CrossRefGoogle ScholarPubMed
Roman, A., Şoanca, A., Barbu-Tudoran, L., Irimie, A.I. & Pall, E. (2012). Comparative evaluation of the influence of two resin-based restorative materials on the behavior of progenitor-like cells. J Optoelectron Adv Mater 14, 491496.Google Scholar
Roman, A., Soancă, A., Florea, A. & Páll, E. (2013). In vitro characterization of multipotent mesenchymal stromal cells isolated from palatal subepithelial tissue grafts. Microsc Microanal 19, 370380.CrossRefGoogle ScholarPubMed
Ronald, L., Sakaguchi, R.L. & Powers, J.M. (2012). Craig’s Restorative Dental Materials, 13th ed. Philadelphia, PA: Elsevier Mosby. pp. 161–198.Google Scholar
Salehi, S., Gwinner, F., Mitchell, J.C., Pfeifer, C. & Ferracane, J.L. (2015). Cytotoxicity of resin composites containing bioactive glass fillers. Dent Mater 3, 195203.CrossRefGoogle Scholar
Santamaria, M.P.L., Ambrosano, G.M., Casati, M.Z., Nociti, F.H. Jr., Sallum, A.W. & Sallum, E.A. (2010). The influence of local anatomy on the outcome of treatment of gingival recession associated with non-carious cervical lesions. J Periodontol 81, 10271034.CrossRefGoogle ScholarPubMed
Sideridou, I.D., Karabela, M.M. & Vouvoudi, E.Ch. (2008). Dynamic thermomechanical properties and sorption characteristics of two commercial light cured dental resin composites. Dent Mater 24, 737743.CrossRefGoogle ScholarPubMed
Stamenović, D. (2005). Effects of cytoskeletal prestress on cell rheological behavior. Acta Biomater 1, 255262.CrossRefGoogle ScholarPubMed
Taira, M., Nakao, H., Matsumoto, T. & Takahashi, J. (2000). Cytotoxic effect of methyl methacrylate on 4 cultured fibroblasts. Int J Prosthodont 13, 311315.Google ScholarPubMed
Tamagawa, T., Ishiwata, I., Ishikawa, H. & Nakamura, Y. (2008). Induced in-vitro differentiation of neural-like cells from human amnion-derived fibroblast-like cells. Hum Cell 21, 3845.CrossRefGoogle ScholarPubMed
Tonetti, M.S.L. & Jepsen, S., Working Group 2 of the European Workshop on Periodontology (2014). Clinical efficacy of periodontal plastic surgery procedures: Consensus report of Group 2 of the 10th European Workshop on Periodontology. J Clin Periodontol 41(Suppl 15), 3643.CrossRefGoogle ScholarPubMed
Van Tonder, A., Joubert, A.M. & Cromarty, A.D. (2015). Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes 8, 47.CrossRefGoogle Scholar
Vega-Avila, E. & Pugsley, M.K. (2011). An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc 54, 1014.Google ScholarPubMed
Wiegand, A.L., Buchalla, W. & Attin, T. (2007). Review on fluoride-releasing restorative materials – fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 23, 343362.CrossRefGoogle ScholarPubMed
Williams, D.F.L. (2009). On the nature of biomaterials. Biomaterials 30, 58975909.CrossRefGoogle ScholarPubMed
Yazid, F.B., Gnanasegaran, N., Kunasekaran, W., Govindasamy, V. & Musa, S. (2014). Comparison of immunomodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Investig 18, 21032112.CrossRefGoogle ScholarPubMed
Yoon, H.J., Kim, S.B., Somaiya, D., Noh, M.J., Choi, K.B., Lim, C.L., Lee, H.Y., Lee, Y.J., Yi, Y. & Lee, K.H. (2015). Type II collagen and glycosaminoglycan expression induction in primary human chondrocyte by TGF-β1. BMC Musculoskelet Disord 16, 141.CrossRefGoogle ScholarPubMed
Zero, D.T., Raubertas, R.F., Fu, J., Pedersen, A.M., Hayes, A.L. & Featherstone, J.D. (1992). Fluoride concentrations in plaque, whole saliva, and ductal saliva after application of home-use topical fluorides. J Dent Res 71, 17681775.CrossRefGoogle ScholarPubMed
Zucchelli, G., Gori, G., Mele, M., Stefanini, M., Mazzotti, C., Marzadori, M., Montebugnoli, L. & De Sanctis, M. (2011). Non-carious cervical lesions associated with gingival recessions: A decision-making process. J Periodontol 82, 17131724.CrossRefGoogle ScholarPubMed
Zuhr, O., Baumer, D. & Hurzeler, M. (2014). The addition of soft tissue replacement grafts in plastic periodontal and implant surgery: Critical elements in design and execution. J Clin Periodontol 41, 123142.CrossRefGoogle ScholarPubMed
Supplementary material: File

Roman supplementary material

Table S1

Download Roman supplementary material(File)
File 53.2 KB
Supplementary material: File

Roman supplementary material

Table S2

Download Roman supplementary material(File)
File 26.6 KB
Supplementary material: File

Roman supplementary material

Table S3

Download Roman supplementary material(File)
File 31.7 KB