Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 0.476 Render date: 2021-03-08T10:34:15.015Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films

Published online by Cambridge University Press:  12 September 2011

D. Abou-Ras
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
R. Caballero
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
C.-H. Fischer
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
C.A. Kaufmann
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
I. Lauermann
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
R. Mainz
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
H. Mönig
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
A. Schöpke
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
C. Stephan
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
C. Streeck
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
S. Schorr
Affiliation:
Free University Berlin, Department for Geosciences, Malteserstr. 74-100, 12249 Berlin, Germany
A. Eicke
Affiliation:
Zentrum für Sonnenenergie- und Wasserstoff-Forschung, Industriestr. 6, 70565 Stuttgart, Germany
M. Döbeli
Affiliation:
ETH Zurich, Laboratory of Ion Beam Physiscs, Schafmattstrasse 20, 8093 Zurich, Switzerland
B. Gade
Affiliation:
Thermo Fisher Scientific, Im Steingrund 4-6, 63303 Dreieich, Germany
J. Hinrichs
Affiliation:
Thermo Fisher Scientific, Hanna-Kunath Str. 11, 28199 Bremen, Germany
T. Nunney
Affiliation:
Thermo Fisher Scientific, The Birches, Imberhorne Lane, East Grinstead, West Sussex, RH19 1UB, UK
H. Dijkstra
Affiliation:
Thermo Fisher Scientific, Takkebijsters 1, 4817 Breda, The Netherlands
V. Hoffmann
Affiliation:
IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
D. Klemm
Affiliation:
IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
V. Efimova
Affiliation:
IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
A. Bergmaier
Affiliation:
Universität der Bundeswehr München, LRT2, Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany
G. Dollinger
Affiliation:
Universität der Bundeswehr München, LRT2, Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany
T. Wirth
Affiliation:
Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
W. Unger
Affiliation:
Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
A.A. Rockett
Affiliation:
Department of Materials Science & Engineering, University of Illinois, 1304 W. Green St., Urbana, IL 61801, USA
A. Perez-Rodriguez
Affiliation:
Catalonia Institute for Energy Research (IREC), C. Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs (Barcelona), Spain IN2UB, Departament d'Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
J. Alvarez-Garcia
Affiliation:
Centre de Recerca i Investigació de Catalunya (CRIC), Trav. de Gràcia 108, 08012 Barcelona, Spain
V. Izquierdo-Roca
Affiliation:
IN2UB, Departament d'Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
T. Schmid
Affiliation:
ETH Zurich, Department of Chemistry and Applied Biosciences, 8093 Zurich, Switzerland
P.-P. Choi
Affiliation:
Max Planck Institute for Iron Research, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
M. Müller
Affiliation:
Otto-von-Guericke-University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
F. Bertram
Affiliation:
Otto-von-Guericke-University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
J. Christen
Affiliation:
Otto-von-Guericke-University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
H. Khatri
Affiliation:
Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, OH 43606, USA
R.W. Collins
Affiliation:
Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, OH 43606, USA
S. Marsillac
Affiliation:
Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, OH 43606, USA
I. Kötschau
Affiliation:
centrotherm photovoltaics AG, Technology Thin Film, Johannes-Schmid-Str. 8, 89143 Blaubeuren, Germany
Corresponding

Abstract

The present work shows results on elemental distribution analyses in Cu(In,Ga)Se2 thin films for solar cells performed by use of wavelength-dispersive and energy-dispersive X-ray spectrometry (EDX) in a scanning electron microscope, EDX in a transmission electron microscope, X-ray photoelectron, angle-dependent soft X-ray emission, secondary ion-mass (SIMS), time-of-flight SIMS, sputtered neutral mass, glow-discharge optical emission and glow-discharge mass, Auger electron, and Rutherford backscattering spectrometry, by use of scanning Auger electron microscopy, Raman depth profiling, and Raman mapping, as well as by use of elastic recoil detection analysis, grazing-incidence X-ray and electron backscatter diffraction, and grazing-incidence X-ray fluorescence analysis. The Cu(In,Ga)Se2 thin films used for the present comparison were produced during the same identical deposition run and exhibit thicknesses of about 2 μm. The analysis techniques were compared with respect to their spatial and depth resolutions, measuring speeds, availabilities, and detection limits.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

Abou-Ras, D., Dietrich, J., Kavalakkatt, J., Nichterwitz, M., Schmidt, S.S., Koch, C.T., Caballero, R., Klaer, J. & Rissom, T. (2011). Analysis of Cu(In,Ga)(S,Se)2 thin-film solar cells by means of electron microscopy. Sol Energ Mater Sol C 95, 14521462.CrossRefGoogle Scholar
Abou-Ras, D., Rudmann, D., Kostorz, G., Spiering, S., Powalla, M. & Tiwari, A.N. (2005). Microstructural and chemical studies of interfaces between Cu(In,Ga)Se2 and In2S3 layers. J Appl Phys 97, 084908-1084908-8.CrossRefGoogle Scholar
Alonso, M.I., Wakita, K., Pascual, J., Garriga, M. & Yamamoto, N. (2001). Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2. Phys Rev B 63, 075203-1075203-13.CrossRefGoogle Scholar
Álvarez-García, J., Pérez-Rodríguez, A., Romano-Rodríguez, A., Morante, J.R., Calvo-Barrio, L., Scheer, R. & Klenk, R. (2001). Microstructure and secondary phases in coevaporated CuInS2 films: Dependence on growth temperature and chemical composition. J Vac Sci Technol A 19, 232239.CrossRefGoogle Scholar
Angeli, J., Bengtson, A., Bogaerts, A., Hoffmann, V., Hodoroaba, V.-D. & Steers, E.B.M. (2003). Glow discharge optical emission spectrometry: Moving towards reliable thin film analysis–a short review. J Anal At Spectrom 18, 670679.CrossRefGoogle Scholar
Barkshire, I., Karduck, P., Rehbach, W.P. & Richter, S. (2000). High-spatial-resolution low-energy electron beam X-ray microanalysis. Mikrochim Acta 132, 113128.CrossRefGoogle Scholar
Beckhoff, B. (2008). Reference-free X-ray spectrometry based on metrology using synchrotron radiation. J Anal At Spectrom 23, 845853.CrossRefGoogle Scholar
Bengtson, A. (1994). Quantitative depth profile analysis by glow discharge. Spectrochim Acta, Part B: Atomic Spectroscopy 49, 411429.CrossRefGoogle Scholar
Bergmaier, A., Dollinger, G. & Frey, C.M. (1995). Quantitative elastic recoil detection. Nucl Instrum Meth Phys Res B 99, 488490.CrossRefGoogle Scholar
Bergmaier, A., Dollinger, G. & Frey, C.M. (1998). A compact Δ/E-E res detector for elastic recoil detection with high sensitivity. Nucl Instrum Meth Phys Res B 136138, 638643.CrossRefGoogle Scholar
Boccara, A.C., Pickering, C. & Rivory, J. (Eds.) (1993). Proceedings of the First International Conference on Spectroscopic Ellipsometry, Paris, France, January 11–14, 1993, Thin Solid Films 234.Google Scholar
Bohne, W., Röhrich, J., Schöpke, A., Selle, B., Sieber, I., Fuhs, W., del Prado, A., San Andrés, E., Mártil, I. & González-Díaz, G. (2004). Compositional analysis of thin SiOxNy:H films by heavy-ion ERDA, standard RBS, EDX and AES: A comparison. Nucl Instrum Meth Phys Res B 217, 237245.CrossRefGoogle Scholar
Caballero, R., Izquierdo-Roca, V., Fontané, X., Kaufmann, C.A., Álvarez-García, J., Eicke, A., Calvo-Barrio, L., Pérez-Rodríguez, A., Schock, H.W. & Morante, J.R. (2010). Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se2 for solar cells applications: Microstructure and Ga in-depth alloying, Acta Mater 58, 34683476.CrossRefGoogle Scholar
Cadel, E., Barreau, N., Kessler, J. & Pareige, P. (2010). Atom probe study of sodium distribution in polycrystalline Cu(In,Ga)Se2 thin film. Acta Mater 58, 26342637.CrossRefGoogle Scholar
Cahen, D. & Noufi, R. (1992). Free energies and enthalpies of possible gas phase and surface reactions for preparation of CuInSe2. J Chem Phys Solids 53(8), 9911005.CrossRefGoogle Scholar
Chakrabarti, R., Maity, A.B., Maiti, B., Dutta, J., Chaudhuri, S. & Pal, A.K. (1996). Effect of Ga incorporation in polycrystalline CulnSe2 films. Vacuum 47, 13711378.CrossRefGoogle Scholar
Chakrabarti, R., Maity, A.B., Pal, R., Bhattacharyya, D., Chaudhuri, S. & Pal, A.K. (1997). Estimation of stress in polycrystalline CuInSe2 films deposited on Mo-coated glass substrates. Phys Stat Sol (a) 160, 6776.3.0.CO;2-X>CrossRefGoogle Scholar
Chu, W.K., Mayer, J.W. & Nicolet, M.A. (1978). Backscattering Spectrometry. Orlando, FL: Academic Press.Google Scholar
Collins, R.W., Aspnes, D.E. & Irene, E.A. (Eds.) (1998). Proceedings of the Second International Conference on Spectroscopic Ellipsometry, Charleston, South Carolina, May 12–15, 1997, Thin Solid Films 313314.Google Scholar
Collins, R.W. & Ferlauto, A.S. (2005). Optical physics of materials. In Handbook of Ellipsometry, Tompkins, H.G. & Irene, E.A. (Eds.), pp. 93236. Norwich, NY: William Andrew Publishing.Google Scholar
Doolittle, L.R. (1986). A semiautomatic algorithm for Rutherford backscattering analysis. Nucl Instrum Meth B 15, 227231.CrossRefGoogle Scholar
Dullweber, T., Rau, U., Contreras, M.A., Noufi, R. & Schock, H.W. (2000). Photogeneration and carrier recombination in graded gap Cu(In,Ga)Se2 solar cells. IEEE Trans Electron Dev 47, 22492254.Google Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in Electron Microscopy. New York: Plenum Press.CrossRefGoogle Scholar
Escobar Galindo, R., Gago, R., Lousa, A. & Albella, J.M. (2009). Comparative depth-profiling analysis of nanometer-metal multilayers by ion-probing techniques. Trends Anal Chem 28, 494505.CrossRefGoogle Scholar
Fernández, B. & Wasim, S.M. (1990). Sound velocities and elastic moduli in CuInTe2 and CuInSe2. Phys Status Solidi A 122, 235242.CrossRefGoogle Scholar
Firoz Hasan, S.M., Quadir, L., Begum, K.S., Subhan, M.A. & Mannan, K.M. (1999). Analysis of the optical absorption characteristics of CuInSe2 thin films. Sol Energ Mat Sol Cells 58, 349360.CrossRefGoogle Scholar
Fujiwara, H., Koh, J., Rovira, P.I. & Collins, R.W. (2000). Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films. Phys Rev B 61, 1083210844.CrossRefGoogle Scholar
Fujiwara, H., Koh, J., Wronski, C.R., Collins, R.W. & Burnham, J.S. (1998). Optical depth profiling of band gap engineered interfaces in amorphous silicon solar cells at monolayer resolution. Appl Phys Lett 72, 29932995.CrossRefGoogle Scholar
Gabor, A.M., Tuttle, J.R., Schwartzlander, A., Tennant, A.L., Contreras, M.A. & Noufi, R. (1994). Band-gap engineering in Cu(In,Ga)Se2 thin films grown from (In,Ga)2Se3 precursors. In Conference Record of the 1st World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawai‘i, December 5–9, 1994, pp. 8386. Piscataway, NJ: IEEE.Google Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705-1043705-8.CrossRefGoogle Scholar
Granata, J.E. & Sites, J.R. (1998). Impact of sodium in the bulk and in grain boundaries of CuInSe2. Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Energy Conversion, Vienna, Austria, July 6–10, 1998, Schmid, J., Ossenbrink, H.A., Helm, P., Ehmann, H. & Dunlop, E.D. (Eds.), pp. 604607. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Gu, L., Özdöl, V.B., Sigle, W., Koch, C.T., Srot, V. & van Aken, P.A. (2010). Correlating the structural, chemical, and optical properties at nanometer resolution. J Appl Phys 107, 013501-1013501-4.CrossRefGoogle Scholar
Herberholz, R., Rau, U., Schock, H.W., Haalboom, T., Gödecke, T., Ernst, F., Beilharz, C., Benz, K.W. & Cahen, D. (1999). Phase segregation, Cu migration and junction formation in Cu(In, Ga)Se2. Eur Phys J Appl Phys 6, 131139.CrossRefGoogle Scholar
Hodoroaba, V.-D., Unger, E.S.U., Jenett, H., Hoffmann, V., Hagenhoff, B., Kayser, S. & Wetzig, K. (2001). Depth profiling of electrically non-conductive layered samples by RF-GDOES and HFM plasma SNMS. Appl Surf Sci 179, 3037.CrossRefGoogle Scholar
Ives, M., Lewis, D.B. & Lehmberg, C. (1997). Depth profile analysis of multilayer Ni–Fe alloy coatings by glow discharge optical emission spectroscopy (GDOES) and energy dispersive X-ray (EDX) linescan—A comparative study. Surf Interf Anal 25, 191201.3.0.CO;2-B>CrossRefGoogle Scholar
Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W. & Powalla, M. (2011). New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog Photovoltaics Res Appl doi:10.1002/pip.1078.CrossRefGoogle Scholar
Johs, B., Hale, J., Ianno, N.J., Herzinger, C.M., Tiwald, T. & Woollam, J.A. (2001). Recent developments in spectroscopic ellipsometry for in situ applications. In Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, Duparré, A. & Singh, B. (Eds.), Vol. 4449, pp. 4157. Bellingham, WA: SPIE Publishing.CrossRefGoogle Scholar
Kacher, J., Landon, C., Adams, B.L. & Fullwood, D. (2009). Bragg's Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy 109, 11481156.CrossRefGoogle ScholarPubMed
Kaufmann, C.A., Caballero, R., Unold, T., Hesse, R., Klenk, R., Schorr, S., Nichterwitz, M. & Schock, H.-W. (2009). Depth profiling of Cu(In,Ga)Se2 thin films grown at low temperatures. Sol En Mat Sol Cells 93, 859863.CrossRefGoogle Scholar
Kaufmann, C.A., Neisser, A., Klenk, R. & Scheer, R. (2005). Transfer of Cu(In,Ga)Se2 thin film solar cells to flexible substrates using an in situ process control. Thin Solid Films 480481, 515519.CrossRefGoogle Scholar
Kelly, T. & Miller, M.K. (2007). Atom probe tomography. Rev Sci Instrum 78, 031101-1031101-20.CrossRefGoogle ScholarPubMed
Klenk, R., Walter, T., Schock, H.W. & Cahen, D. (1993). A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Adv Mater 5, 114119.CrossRefGoogle Scholar
Kötschau, I.M. & Schock, H.W. (2003). Depth profile of the lattice constant of the Cu-poor surface layer in (Cu2Se)1−x(In2Se3)x evidenced by grazing incidence X-ray diffraction. J Phys Chem Solids 64, 15591563.CrossRefGoogle Scholar
Kötschau, I.M. & Schock, H.W. (2006). Compositional depth profiling of polycrystalline thin films by grazing-incidence X-ray diffraction. J Appl Cryst 39, 683696.CrossRefGoogle Scholar
L'Ecuyer, J.L., Brassard, C., Cardinal, C., Chabbal, J., Deschênes, L., Labrie, J.P., Terreault, B., Martel, J.G. & St.-Jacques, R. (1976). An accurate and sensitive method for the determination of the depth distribution of light elements in heavy materials. J Appl Phys 47, 381382.CrossRefGoogle Scholar
Lee, J., Rovira, P.I., An, I. & Collins, R.W. (1998). Rotating compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth. Rev Sci Instrum 69, 18001810.CrossRefGoogle Scholar
Levenberg, K. (1944). A method for the solution of certain problems in least squares. Quart Appl Math 2, 164168.CrossRefGoogle Scholar
Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11, 431441.CrossRefGoogle Scholar
Marsillac, S., Ranjan, V. & Little, S. (2010). In-situ study of Cu(In,Ga)Se2 dielectric functions evolution as a function of copper content. In Conference Record of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, USA, June 20–25, 2010. Piscataway, NJ: IEEE.Google Scholar
Miller, M.K. (2000). Atom Probe Tomography—Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Mönig, H., Fischer, C.-H., Grimm, A., Johnson, B., Kaufmann, C.A., Caballero, R., Lauermann, I. & Lux-Steiner, M.C. (2010). Surface Cu-depletion of Cu(In,Ga)Se2 thin films: Further experimental evidence for a defect-induced surface reconstruction. J Appl Phys 107, 113540-1113540-5.CrossRefGoogle Scholar
Mönig, H., Lauermann, I., Grimm, A., Camus, C., Kaufmann, C.A., Pistor, P., Jung, C., Kropp, T., Lux-Steiner, M.C. & Fischer, C.-H. (2008). Controlled variation of the information depth by angle dependent soft X-ray emission spectroscopy: A study on polycrystalline Cu(In,Ga)Se2. Appl Surf Sci 255, 24742477.CrossRefGoogle Scholar
Niles, D.W., Ramanathan, K., Hasoon, F., Noufi, R., Tielsch, B.J. & Fulghum, J.E. (1997). Na impurity chemistry in photovoltaic Cu(In,Ga)Se2 thin films: Investigation with X-ray photoelectron spectroscopy. J Vac Sci Techn A 15, 30443049.CrossRefGoogle Scholar
Oechsner, H. (Ed.) (1984). Thin Film and Depth Profile Analysis, Topics in Current Physics, vol. 37. Berlin: Springer.CrossRefGoogle Scholar
Pal, R., Chattopadhyay, K.K., Chaudhuri, S. & Pal, A.K. (1994). Variation of trap state density and barrier height with Cu/In ratio in CuInSe2 films. Thin Solid Films 247, 814.CrossRefGoogle Scholar
Payling, R. & Jones, D.G. (1993). Fundamental parameters in quantitative depth profiling and bulk analysis with glow discharge spectrometry. Surf Interf Anal 20, 787795.CrossRefGoogle Scholar
Platzer-Björkman, C., Törndahl, T., Abou-Ras, D., Malmström, U., Kessler, J. & Stolt, L. (2006). Zn(O,S) buffer layers by atomic layer deposition in Cu(In,Ga)Se2 based thin film solar cells: Band alignment and sulfur gradient. J Appl Phys 100, 044506-1044506-9.CrossRefGoogle Scholar
Podraza, N.J., Li, J., Wronski, C.R., Dickey, E.C., Horn, M.W. & Collins, R.W. (2008). Analysis of Si1−xGex:H thin films with graded composition and structure by real time spectroscopic ellipsometry. Phys Stat Sol A 205, 892895.CrossRefGoogle Scholar
Reniers, F. & Tewell, C.R. (2009). In depth analysis (profiling). In Handbook of Surface and Interface Analysis, Methods for Problem-Solving, 2nd ed., Rivière, J.C., Myhra, S. (Eds.), pp. 281318. London: Taylor & Francis Group.CrossRefGoogle Scholar
Rincón, C. & Ramírez, F.J. (1992). Lattice vibrations of CulnSe2 and CuGaSe2 by Raman microspectrometry. J Appl Phys 72, 43214324.CrossRefGoogle Scholar
Rockett, A., Britt, J.S., Gillespie, T., Marshall, C., Al Jassim, M.M., Hasoon, F., Matson, R. & Basol, B. (2000). Na in selenized Cu(In,Ga,Se)2 on Na-containing and Na-free glasses: Distribution, grain structure, and device performances. Thin Solid Films 372, 212217.CrossRefGoogle Scholar
Saez-Araoz, R., Abou-Ras, D., Niesen, T.P., Neisser, A., Wilchelmi, K., Lux-Steiner, M.Ch. & Ennaoui, A. (2009). In situ monitoring the growth of thin-film ZnS/Zn(S,O) bilayer on Cu-chalcopyrite for high performance thin film solar cells. Thin Solid Films 517, 23002304.CrossRefGoogle Scholar
Schlesinger, R., Oberdorfer, C., Würz, R., Greiwe, G., Stender, P., Artmeier, M., Pelka, P., Spaleck, F. & Schmitz, G. (2010). Design of a laser-assisted tomographic atom probe at Münster University. Rev Sci Instrum 81, 043703-1043703-8.Google Scholar
Schmid, T., Camus, C., Lehmann, S., Abou-Ras, D., Fischer, C.-H., Lux-Steiner, M.C. & Zenobi, R. (2009). Spatially resolved characterization of chemical species and crystal structures in CuInS2 and CuGaxSey thin films using Raman microscopy. Phys Stat Sol A 206, 10131016.CrossRefGoogle Scholar
Schubert, E.F., Goepfert, I.D., Grieshaber, W. & Redwing, J.M. (1997). Optical properties of Si-doped GaN. Appl Phys Lett 71, 921923.CrossRefGoogle Scholar
Siegle, H., Hoffmann, A., Eckey, L., Thomsen, C., Christen, J., Bertram, F., Schmidt, D., Rudloff, D. & Hiramatsu, K. (1997). Vertical strain and doping gradients in thick GaN layers. Appl Phys Lett 71, 24902492.CrossRefGoogle Scholar
Sigle, W., Kramer, S., Varshney, V., Zern, A., Eigenthaler, U. & Rühle, M. (2003). Plasmon energy mapping in energy-filtering transmission electron microscopy. Ultramicroscopy 96, 565571.CrossRefGoogle ScholarPubMed
Stephan, C., Schorr, S. & Schock, H.-W. (2009). New structural investigations in the Cu2Se(S)-In2Se3(S)/Cu2Se(S)-Ga2Se3(S) phase diagrams. In Thin-Film Compound Semiconductor Photovoltaics—2009, Yamada, A., Heske, C., Contreras, M., Igalson, M. & Irvine, S.J.C. (Eds.), MRS Symp Proc 1165, 1165-M09-08-1–6. Warrendale, PA: Materials Research Society.Google Scholar
Streeck, C., Beckhoff, B., Reinhardt, F., Kolbe, M., Kanngießer, B., Kaufmann, C.A. & Schock, H.W. (2010). Elemental depth profiling of Cu(In,Ga)Se2 thin films by reference-free grazing incidence X-ray fluorescence analysis. Instrum Meth Phys Res B 268, 277281.CrossRefGoogle Scholar
Suri, D.K., Nagpal, K.C. & Chadha, G.K. (1989). X-ray study of CuGaxIn1−xSe2 solid solutions. J Appl Crystallogr 22, 578583.CrossRefGoogle Scholar
Tanino, H., Deai, H. & Nakanishi, H. (1993). Raman spectra of CuGaxIn1−xSe2. Jpn J Appl Phys 32(Suppl 32–3), 436438.CrossRefGoogle Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Törndahl, T., Coronel, E., Hultqvist, A., Platzer-Björkman, C., Leifer, K. & Edoff, M. (2009). The effect of Zn1−xMgxO buffer layer deposition temperature on Cu(In,Ga)Se2 solar cells: A study of the buffer/absorber interface. Prog Photovoltaics Res Appl 17, 115125.CrossRefGoogle Scholar
Walker, J.D., Khatri, H., Ranjan, V., Little, S., Zartman, R., Collins, R.W. & Marsillac, S. (2009). Dielectric functions and growth dynamics of CuIn1−x,GaxSe2 absorber layers via in situ real time spectroscopic ellipsometry. In Conference Record of the 34th IEEE Photovoltaics Specialists Conference, Philadelphia, Pennsylvania, June 7–12, 2009, pp. 11541156. Piscataway, NJ: IEEE.Google Scholar
Watanabe, M., Ackland, D.W., Burrows, A., Kiely, C.J., Williams, D.B., Krivanek, O.L., Dellby, N., Murfitt, M.F. & Szilagyi, Z. (2006). Improvements in the X-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. Microsc Microanal 12, 515526.CrossRefGoogle ScholarPubMed
Wilkinson, A.J., Meaden, G. & Dingley, D.J. (2006a). High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy 106, 307313.CrossRefGoogle Scholar
Wilkinson, A.J., Meaden, G. & Dingley, D.J. (2006b). High resolution mapping of strains and rotations using electron backscatter diffraction. Mat Sci Techn 22(11), 12711278.CrossRefGoogle Scholar
Witte, W., Kniese, R. & Powalla, M. (2009a). Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents. Thin Solid Films 517, 867869.CrossRefGoogle Scholar
Witte, W., Kniese, R. & Powalla, M. (2009b). Influence of the Cu content on structural and vibrational properties in polycrystalline CuGaSe2 thin films. In Thin-Film Compound Semiconductor Photovoltaics—2009, Yamada, A., Heske, C., Contreras, M., Igalson, M. & Irvine, S.J.C. (Eds.), MRS Symp. Proc. 1165, 1165-M05-20-1–1165-M05-20-6. Warrendale, PA: Materials Research Society.Google Scholar
Zaefferer, S. (2002). Computer aided crystallographic analysis in the TEM. Adv Imag Electr Phys 125, 355415.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 30
Total number of PDF views: 177 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *