Skip to main content Accessibility help

Aberration-Corrected Scanning Transmission Electron Microscope (STEM) Through-Focus Imaging for Three-Dimensional Atomic Analysis of Bismuth Segregation on Copper [001]/33° Twist Bicrystal Grain Boundaries

  • Charles Austin Wade (a1) (a2), Mark J. McLean (a1), Richard P. Vinci (a1) and Masashi Watanabe (a1)


Scanning transmission electron microscope (STEM) through-focus imaging (TFI) has been used to determine the three-dimensional atomic structure of Bi segregation-induced brittle Cu grain boundaries (GBs). With TFI, it is possible to observe single Bi atom distributions along Cu [001] twist GBs using an aberration-corrected STEM operating at 200 kV. The depth resolution is ~5 nm. Specimens with GBs intentionally inclined with respect to the microscope’s optic axis were used to investigate Bi segregant atom distributions along and through the Cu GB. It was found that Bi atoms exist at most once per Cu unit cell along the GB, meaning that no continuous GB film is present. Therefore, the reduced fracture toughness of this particular Bi-doped Cu boundary would not be caused by fracture of Bi–Bi bonds.


Corresponding author

* Corresponding author.


Hide All

Current address: National Institute of Standards and Technology, Materials Measurement Science Division, 100 Bureau Drive, Mailstop 8370, Gaithersburg, MD 20899, USA.



Hide All
Armstrong, D.E.J., Wilkinson, A.J. & Roberts, S.G. (2011). Micro-mechanical measurements of fracture toughness of bismuth embrittled copper grain boundaries. Philos Mag Lett 91(6), 394400.
Arslan, I., Marquis, E.A., Homer, M., Hekmaty, M.A. & Bartelt, N.C. (2008). Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 15791585.
Blake, R.G., Jostsons, A., Kelly, P.M. & Napier, J.G. (1978). The determination of extinction distances and anomalous absorption coefficients by scanning transmission electron microscopy. Philos Mag A 37(1), 116.
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci U S A 103(9), 30443048.
Borisevich, A.Y., Lupini, A.R., Travaglini, S. & Pennycook, S.J. (2006). Depth sectioning of aligned crystals with the aberration-corrected scanning transmission electron microscope. J Electron Microsc 55(1), 712.
Cosgriff, E.C. & Nellist, P.D. (2007). A Bloch wave analysis of optical sectioning in aberration-corrected STEM. Ultramicroscopy 107, 626634.
Duscher, G., Chisholm, M.F., Alber, U. & Ruhle, M. (2004). Bismuth-induced embrittlement of copper grain boundaries. Nat Mater 3, 621626.
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102(9), 096101.
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114.
Hampe, W. (1874). Beiträge zu der Metallurgie des Kupfers. Berg-Hütten und Salinenwesen 22, 93138.
Ishikawa, R., Lupini, A.R., Findlay, S.D., Taniguchi, T. & Pennycook, S.J. (2014). Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron microscopy. Nano Lett 14, 19031908.
Keast, V.J., Bruley, J., Rez, P., Maclaren, J.M. & Williams, D.B. (1998). Chemistry and bonding changes associated with the segregation of Bi to grain boundaries in Cu. Acta Mater 46(2), 481490.
Lee, Z., Rose, H., Lehtinen, O., Biskupek, J. & Kaiser, U. (2014). Electron dose dependence of signal-to-noise ratio, atomic contrast and resolution in transmission electron microscope images. Ultramicroscopy 145, 312.
Li, G.H. & Zhang, L.D. (1995). Relationship between misorientation and bismuth induced embrittlement of [001] tilt boundary in copper bicrystal. Scripta Metall 32(9), 13351340.
Luo, J., Cheng, H., Asl, K.M., Kiely, C.J. & Harmer, M.P. (2011). The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333, 17301733.
Lupini, A., Borisevich, A.Y., Idrobo, J.C., Christen, H.M., Biegalski, M. & Pennycook, S.J. (2009). Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Microsc Microanal 15, 441453.
McLean, M.J., Wade, C.A., Watanabe, M. & Vinci, R.P. (2014). Microscale fracture toughness of bismuth doped copper bicrystals using edge notched microtensile tests. Exp Mech 54, 685688.
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96(3–4), 413431.
Nellist, P. (2011). The principles of STEM imaging. In Scanning Transmission Electron Microscopy, Pennycook S.J. & Nellist P.D. (Eds.), pp. 91115. New York: Springer.
Nellist, P.D., Behan, G., Kirkland, A.I. & Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89, 124105.
Powell, B.D. & Mykura, M. (1973). The segregation of bismuth to grain boundaries in copper-bismuth alloys. Acta Metall 21, 11511156.
Raabe, D., Herbig, M., Sandlobes, S., Li, Y., Tytko, D., Kuzmina, M., Ponge, D. & Choi, P.P. (2014). Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18, 253261.
Sawada, H., Tanishiro, Y., Ohashi, N., Tomita, T., Hosokawa, F., Kaneyama, T., Kondo, Y. & Takayanagi, K. (2009). STEM imaging of 47-pm-seperated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. J Electron Microsc 58, 357361.
Schaffer, B., Grogger, W. & Kothleitner, G. (2004). Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102(1), 2736.
Schweinfest, R., Paxton, A.T. & Finnis, M.W. (2004). Bismuth embrittlement of copper is an atomic size effect. Nature 432, 10081011.
Seah, M.P. & Hondros, E.D. (1973). Grain boundary segregation. Proc R Soc Lond A Math Phys Sci 335, 191212.
Shibata, N., Findlay, S.D., Azuma, S., Mizoguchi, T., Yamamoto, T. & Ikuhara, Y. (2009). Atomic-scale imaging of individual dopant atoms in a buried interface. Nat Mater 8, 654658.
Sigle, W., Ciiang, L.S. & Gusr, W. (2002). On the correlation between grain-boundary segregation, faceting and embrittlement in Bi-doped Cu. Philos Mag A 82(8), 15951608.
van Benthem, K., Lupini, A.R., Oxley, M.P., Findlay, S.D., Allen, L.J. & Pennycook, S.J. (2006). Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 106, 10621068.
Watanabe, M. (2011). X-ray energy-dispersive spectrometry in STEM. In Scanning Transmission Electron Microscopy, Pennycook S.J. & Nellist P.D. (Eds.), pp. 291351. New York: Springer.
Xin, H.L., Intaraprasonk, V. & Muller, D.A. (2008). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92, 013125.
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc (Tokyo) 58(3), 157165.
Yang, H., Lozano, J.G., Pennycook, T.J., Jones, L., Hirsch, P.B. & Nellist, P.D. (2015). Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning. Nat Commun 6, 7266. (7 pp.).


Aberration-Corrected Scanning Transmission Electron Microscope (STEM) Through-Focus Imaging for Three-Dimensional Atomic Analysis of Bismuth Segregation on Copper [001]/33° Twist Bicrystal Grain Boundaries

  • Charles Austin Wade (a1) (a2), Mark J. McLean (a1), Richard P. Vinci (a1) and Masashi Watanabe (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed