Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-tqmtl Total loading time: 0.162 Render date: 2021-04-17T00:38:47.442Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A simple device for the evaluation of the UV radiation index

Published online by Cambridge University Press:  02 July 2003

Giuseppe Rocco Casale
Affiliation:
Department of Physics, University of Rome ‘La Sapienza’, P.le A. Moro 2 00185 Rome, Italy e-mail: annamaria.siani@uniroma1.it
Anna Maria Siani
Affiliation:
Department of Physics, University of Rome ‘La Sapienza’, P.le A. Moro 2 00185 Rome, Italy e-mail: annamaria.siani@uniroma1.it
Cesare Lucarini
Affiliation:
Department of Chemistry Studies and Technology of Biologically Active Substances, University of Rome ‘La Sapienza’, P.le A. Moro 2 00185 Rome, Italy
Mario Catamo
Affiliation:
Department of Chemistry Studies and Technology of Biologically Active Substances, University of Rome ‘La Sapienza’, P.le A. Moro 2 00185 Rome, Italy
Get access

Abstract

The solar ultraviolet radiation (UV) flux density at the earth's surface depends on the incoming solar energy and the transmission properties of the atmosphere. UV radiation is strongly absorbed by ozone in the spectral range 200-310 nm, while the attenuation is increasingly weaker at longer wavelengths. Following the discovery of the Antarctic ozone hole in 1985, the risk of a possible UV increase at ground level, due to the observed stratospheric ozone depletion, has heightened the interest within the scientific community given the potentially harmful effects on terrestrial and aquatic ecosystems. Spectroradiometers, broad-band meters and dosimeters may be used for measurements of solar UV. In addition, radiation transfer models can be used to quantify UV irradiances at various times and locations, provided that the extraterrestrial solar radiation and the state of the atmosphere are known. Information about UV radiation at the earth's surface is given by the ultraviolet index ‘UVI’, which is defined as the effective integrated irradiance (280-400 nm) weighted by the erythemal action spectrum. The UV Index is widely used by many international weather services as an indicator of UV levels at the earth's surface providing public awareness of the effects of prolonged exposure to the sun's rays.

The aim of this paper is to present a device capable of estimating the UV Index. This device is a compact disc, used as a sundial, and is based on modelled UV irradiances derived from the STAR radiative transfer model (System for Transfer of Atmospheric Radiation). The device was tested in an urban setting under clear sky conditions.

Type
Research Article
Copyright
© 2003 Royal Meteorological Society

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 2 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A simple device for the evaluation of the UV radiation index
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A simple device for the evaluation of the UV radiation index
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A simple device for the evaluation of the UV radiation index
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *