Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-n4bck Total loading time: 0.531 Render date: 2022-08-17T03:58:07.187Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Numerical prediction of severe convection: comparison with operational forecasts

Published online by Cambridge University Press:  11 March 2003

Milton S. Speer
Affiliation:
Bureau of Meteorology, PO Box 413 Darlinghurst, NSW 1300 Australia Email: m.speer@bom.gov.au
Lance M. Leslie
Affiliation:
University of New South Wales, Sydney, Australia Email: l.leslie@unsw.edu.au; qlx@maths.unsw.edu.au
L. Qi
Affiliation:
University of New South Wales, Sydney, Australia Email: l.leslie@unsw.edu.au; qlx@maths.unsw.edu.au
Get access

Abstract

The prediction of severe convection is a major forecasting problem in Australia during the summer months. In particular, severe convection in the Sydney basin frequently produces heavy rain or hail, flash flooding, and destructive winds. Convective activity is a forecasting challenge for the Sydney basin, mainly from October to April. Currently, there is a need for improved numerical model guidance to supplement the official probabilistic convective outlooks, issued by the operational forecasters. In this study we assess the performance of a very high resolution (2 km) numerical weather prediction (NWP) model in terms of how well it performed in providing guidance on heavy rainfall and hail, as well as other mesoscale features such as low level convergence lines. Two cases are described in which the operational forecasts were incorrect on both occasions. Non-severe thunderstorms were predicted on 1 December 2000 but severe convection occurred. Severe convection was predicted on 8 December 2000, but no convection was reported. In contrast, the numerical model performed well, accurately predicting severe convection on 1 December and no convection on 8 December. These results have encouraged a program aimed at providing an enhanced numerical modelling capability to the operational forecasters for the Sydney basin.

Type
Research Article
Copyright
© 2003 Royal Meteorological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Numerical prediction of severe convection: comparison with operational forecasts
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Numerical prediction of severe convection: comparison with operational forecasts
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Numerical prediction of severe convection: comparison with operational forecasts
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *