Skip to main content Accessibility help
×
Home

Response surface methodology to predict the mechanical properties of hot-rolled sheets

  • A. Noroozi (a1), M. Ayaz (a1), N.B. Mostafa Arab (a1) and D. Mirahmadi Khaki (a2)

Abstract

The goal of this study is to empirically investigate the major hot rolling process parameters affecting the yield strength, ultimate tensile strength and strain-hardening exponent of Nb-microalloyed steel sheets. The parameters considered were the roughing, finishing and coiling temperatures. Three levels for each parameter were used to develop a model relating the process parameters to mechanical properties. By applying the response surface methodology, analysis of variance was done to determine the mathematical models related to each response. The results indicated that decreasing the coiling and finishing temperatures significantly influenced the mechanical properties. Also, the models predicted that the maximum yield strength, ultimate tensile strength and strain-hardening exponent are simultaneously obtained under the following conditions: roughing temperature = 1097 °C, finishing temperature = 837 °C and coiling temperature = 580 °C. The predicted values were close to the experimental values, indicating the suitability of the models.

Copyright

References

Hide All
[1] Zrnik, J., Kvackaj, T., Sripinproach, D., Sricharoenchai, P., Mater. Proc. Technol. 133 (2003) 236-242
[2] T. Altan, Metal Forming; Fundamentals and Applications, Metals Park, Ohio 1985
[3] Ebrahimi, R., Pardis, N., Mater. Sci. Eng. A 518 (2009) 56-60
[4] W.F. Hosford, R.M. Caddell, Metal Forming: Mechanics and Metallurgy, Prentice-Hall, USA, 1983
[5] Morrison, W.B., J. Trans. Amer. Soc. Metals 59 (1966) 824-846
[6] Antoine, P., Vandeputte, S., Vogt, J.B., Mater. Sci. Eng. A 433 (2006) 55-63
[7] Uemoto, M., Liu, Z.G., Sugimoto, S., Tsuchiya, K., Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science A 31A (2000) 1785-1794
[8] Qiu, H., Wang, L.N., Hanamura, T., Torizuka, S., Mater. Sci. Eng. A 536 (2012) 269-272
[9] A.J. Deardo, Modern Thermomechanical Processing of Microalloyed Steel: A Physical Metallurgy Prespective, In: M. Korchynsky, A.J. DeArdo, P. Repas, G. Tither (Eds.), Iron and Steel Society, Pittsburg, USA, 1995, pp. 15-34
[10] Zhao, Ming Chun, Yang, Ke, Shan, Yiyng, Mater. Sci. Eng. A 335 (2002) 14-20.
[11] H. Tamura, H. Sekine, T. Tanaka, C. Ouchi, Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth & Co. Ltd., London, 1988
[12] Kumar, D.R., Mater. Proc. Technol. 130-131 (2002) 31-41
[13] Xiao, F.R., Liao, B., Shan, Y.Y., Qiao, G.Y., Zhong, Y., Zhang, C., Yang, K., Mater. Sci. Eng. A 431 (2006) 41-52
[14] Schambron, T., Phillips, A.W., Obrine, D.M., Burg, J., Pereloma, E.V., Killmore, C.C., Williams, J.A., Iron and Steel Institute of Japan 49 (2009) 284-292
[15] Xu, Y.B., Yu, Y.M., Xiao, B.L., Liu, Z.Y., Wang, G.D., Mater. Sci. 44 (2009) 3928-3935
[16] Koo, J.Y., Luton, M.J., Bangaru, N.V., Int. J. Offshore Polar Eng. 14 (2004) 2-10
[17] Garcia, C.I., Cho, K., Hua, M., Deardo, A.J., Mater. Sci. Forum 638-642 (2010) 124-129
[18] H. Yada, Y. Matsumara, In: I. Tamura (Eds.), Proceedings of International Conference on physical metallurgy of thermo-mechanical processing of steel and other materials, THERMEC’88, Iron and Steel Institute of Japan, Tokyo, Japan, 1988, pp. 200-206
[19] Chio, J.K., Seo, D.H., Lee, J.S., Um, K.K., Choo, W.Y., Iron and Steel Institute of Japan 43 (2003) 746-754
[20] S. Yamamoto, C. Ouchi, T. Osuka, In: A.J. DeArdo, G.A. Ratz, P.J. Wray (Eds.), Thermomechanical Processing of Microalloyed Austenite, TMS-AIME, Japan, 1982, pp. 613-639
[21] Das, P., Mukherjee, S., Ganguly, S., Bhattacharyay, B.K., Datta, S., Comput. Mater. Sci. 45 (2009) 104-110.
[22] Han, Y., Shi, J., Xu, L., Cao, W.Q., Dong, H., Mater. Sci. Eng. A 553 (2012) 192-199.
[23] Wei-minl, Guo, Zuo-cheng, Wang, Sheng, Liu, Xie-bin, Wang, Iron and Steel Research International 18 (2011) 42-46
[24] Monajati, H., Asefi, D., Parsapour, A., Abbasi, Sh., Comput. Mater. Sci. 49 (2010) 876-881
[25] Perlade, A., Grandemange, D., Huin, D., Couturier, A., Oostsuka, K., Revue de Métallurgie 105 (2008) 443-451
[26] Berdjane, D., Fares, M.L., Baccouche, M., Lemmoui, A.N., Revue de Métallurgie 109 (2012) 465-475
[27] D.C. Montgomery, Design and analysis of experiments, John Wiley and Sons, New York, 2004
[28] G. Box, J. Hunter, W. Hunter, Statistics for experimenters, design, innovation and discovery, Wiley, New York, 2005
[29] Brasil, Jorge L., Eva, Ricardo R., Milcharek, Caroline D., Martins, Lucas C., Pavan, Flavio A., Santos, Garsia A. Dos, Silvio, J.R., Dias, L.P., Jairton, Dupant, Norena, Casiano P. Zapata, Limaa, Eder C., Hazardous Materials 133 (2006) 143-153
[30] Yang, Y.K., Chuang, M.T., Lin, S.S., Mater. Proc. Technol. 209 (2009) 4395-4400
[31] Mirahmadi Khaki, D., Alizaadeh Otaaghvar, V., Iron and Steel Research International 18 (2011) 585-589
[32] A.C. Atkinson, A.N. Donev, Optimum Experimental Design, Oxford Science, Oxford, 1992
[33] Minitab Inc., MINITAB® Release 16 Statistical Software for Windows, State College, PA, 2011
[34] Gomez, Manuel, Valles, Pilar, Medina, Sebastian F., Mater. Sci. Eng. A 528 (2011) 4761-4773
[35] Bakkaloglu, Adem, Mater. Lett. 56 (2002) 263-272
[36] R.H. Myers, D.C. Montgomery, C.M.A. Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley, USA, 2009
[37] Qing-yun, Sha, Gui-yan, Li, Li-feng, Qiao, Ping-yuan, Yan, Iron and Steel Research International 14 (2007) 316-319.

Keywords

Related content

Powered by UNSILO

Response surface methodology to predict the mechanical properties of hot-rolled sheets

  • A. Noroozi (a1), M. Ayaz (a1), N.B. Mostafa Arab (a1) and D. Mirahmadi Khaki (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.