Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-20T02:27:21.515Z Has data issue: false hasContentIssue false

Kinetics of dendrite growth and dendritic fragmentation in the undercooled Co81.2 Cu18.8 alloy’s melt

Published online by Cambridge University Press:  14 May 2014

P.K. Galenko
Affiliation:
Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische Fakultät, Löbdergraben 32, 07743 Jena, Germany. e-mail: PeterGalenko@uni-jena.de
M. Kolbe
Affiliation:
Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51147 Köln, Germany
D.M. Herlach
Affiliation:
Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51147 Köln, Germany Institut für Festkörperphysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
M. Rettenmayr
Affiliation:
Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische Fakultät, Löbdergraben 32, 07743 Jena, Germany. e-mail: PeterGalenko@uni-jena.de
Get access

Abstract

The growth velocity during solidification of an undercooled melt of a Co-Cu alloy processed by electromagnetic levitation was measured using a high speed video camera. Applying a model of local non-equilibrium solidification, theoretical predictions of dendrite growth velocity and dendritic growth radii are compared with high-accuracy measurements of the growth kinetics. As the undercooling ΔT reaches a critical value consistent with the dendrite growth velocity being equal to the atomic diffusion speed VD in bulk liquid, ΔT = ΔT(VD), the velocity-undercooling relationship exhibits a break-point. A distinct change in the dendritic growth mechanism exists with the onset of complete solute trapping and chemically partitionless solidification of the core of the main stems of the dendrites occurs. A complete transition to the thermally controlled growth of dendrites occurs at ΔT = ΔT(VD) that leads to essential changes in the microstructure of dendritic patterns The phenomenon of dendritic fragmentation in Co-Cu melts, solidifying at ΔT < ΔT(VD), is discussed.

Type
Research Article
Copyright
© EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nakagawa, Y., Acta Metall. 6 (1958) 704 Google Scholar
Nishizawa, T., Ishida, K., Bull. Alloy Phase Diag. 5 (1984) 161 Google Scholar
Munitz, A., Elder-Randall, S.P., Abbaschian, R., Metall. Trans. A 32A (1992) 1817-1827 Google Scholar
Munitz, A., Abbaschian, R., Metall. Mater. Trans. A 27 (1996) 4049 Google Scholar
Cao, C.D., Görler, G.P., Herlach, D.M., Wei, B., Mater. Sci. Eng. A 325 (2002) 503 Google Scholar
M. Kolbe, C.D. Cao, P.K. Galenko, T. Letzig, G.P. Görler, B. Wei, D.M. Herlach, Phase morphology of undercooled Cu-Co alloys in the metastable miscibility gap. In: Science of Metastable and Nanocrystalline Alloys: Structure, Properties and Modelling, edited by A.R. Dinesen et al. National Laboratory, Roskilde, Denmark, Risø¸2001, pp. 289-294 Google Scholar
M. Kolbe, C.D. Cao, P.K. Galenko, J. Fransaer, D.M. Herlach, Dynamics of solidification and microstructure evolution in undercooled Co-Cu alloys with metastable miscibility gap. In: Fundamentals of Advanced Materials for Energy Conservation, edited by D. Chandra and R.G. Bautista. TMS, Warrendale, Pennsylvania, USA, 2002, pp. 539-553 Google Scholar
Alexandrov, D.V., Galenko, P.K., Phys. Rev. E 87 (2013) 062403-1-5 Google Scholar
X.Q., Yang, Z., Chen, W., Yang, J.T., Liu, Int. J. Mater. Res. (formely Z. Metallkd.) 104(8) (2013) 783-788 Google Scholar
Davidoff, E., Galenko, P.K., Herlach, D.M., Kolbe, M., Wanderka, N., Acta Materialia 61 (2013) 1078-1092 Google Scholar
Galenko, P.K., Danilov, D.A., Phys. Lett. A 235 (1997) 271 Google Scholar
Galenko, P.K., Danilov, D.A., J. Cryst. Growth 197 (1999) 992 Google Scholar
D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undercooled melts, Elsevier, Amsterdam, 2007 CrossRefGoogle Scholar
Wang, K., Wang, H.F., Liu, F., Zhai, H.M., Acta Materialia 61 (2013) 4254-4265 Google Scholar
G.J., Ehlen, D.M., Herlach, IOP Conf. Series: Mater. Sci. Eng. 33 (2012) 012066-1-10 Google Scholar
A.A. Chernov, in Rost Kristallov, edited by A.V. Shubnikov, N.N. Sheftal (Akad. Nauk SSSR, Moscow, 1959), Vol. 3 [Growth of Crystals Consultants Bureau, New York, 1962, Vol. 3, p. 35] Google Scholar
Aziz, M.J., Kaplan, T., Acta Metall. 36 (1988) 2335 Google Scholar
Galenko, P., Phys. Rev. B 65 (2002) 144103-1-11 Google Scholar
Galenko, P., Phys. Rev. E 76 (2007) 031606-1-9 Google Scholar
Bouissou, P., Pelcé, P., Phys. Rev. A 40 (1989) 6673 Google Scholar
Brener, E., Melnikov, V.I., Adv. Phys. 40 (1991) 53 Google Scholar
W. Kurz, D.J. Fisher, Fundamentals of solidification, Trans Tech, Aedermannsdorf, 1998 CrossRefGoogle Scholar
D. Holland-Moritz, P.K. Galenko, O. Shuleshova, W. Löser, Dendrite Growth in Undercooled Ti-Al-Nb melts, (2008) unpublished manuscript Google Scholar
M. Kolbe, Demixing of Cu–Co Alloys Showing a Metastable Miscibility Gap, In: Solidification of Containerless Undercooled Melts, edited by D.M. Herlach, D.M. Matson. Wiley, Weinheim, 2012, pp. 51-67 Google Scholar
Herlach, D.M., Mater. Sci. Eng. Rep. R12 (1994) 177-272 Google Scholar
Schwarz, M., Karma, A., Eckler, K., Herlach, D.M., Phys. Rev. Lett. 73 (1994) 1380 Google Scholar
Karma, A., Int. J. Non-Equilib. Process. 11 (1998) 201 Google Scholar
Rettenmayr, M., Int. Mater. Rev. 54 (2009) 1-17 Google Scholar
Ruvalcaba, D., Mathiesen, R.H., Eskin, D.F., Arnberg, L., Katgerman, L., Acta Mater. 55 (2007) 4287-4292 Google Scholar
Jackson, K.A., Hunt, J.D., Uhlmann, D.R., Seward, T.P., Trans. TMS AIME 236 (1966) 149-158 Google Scholar
Yasuda, H., Ohnaka, I., Kawasaki, K., Sugiyama, A., Ohmichi, T., Iwane, J., Umetani, K., J. Cryst. Growth 262 (2005) 645-652 Google Scholar
Liu, S., Lu, S.Z., Hellawell, A., J. Cryst. Growth 234 (2002) 740-750 Google Scholar
D.M. Herlach, P.K. Galenko, Non-equilibrium solidification in multicomponent transformations: Eutectic transformation, Spinodal decomposition and Glass formation. DLR-Project-Repoprt 50 WM 0736 (Bundesministerium für Wirtschaft und Technologie) 19 May 2011, p. 38 Google Scholar
M., Rettenmayr, Pure. Appl. Chem. 83(5) (2011) 1085-1092 Google Scholar
Galenko, P., Jou, D., Phys. Rev. E 71 (2005) 046125-1-11 Google Scholar
Galenko, P.K., Abramova, E.V., Jou, D., Danilov, D.A., Lebedev, V.G., Herlach, D.M., Phys. Rev. E 84 (2011) 041143-1-15 Google Scholar