Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T20:40:06.906Z Has data issue: false hasContentIssue false

THE POTENTIAL OF BACTERIA FOR THE MICROBIAL CONTROL OF GRASSHOPPERS AND LOCUSTS

Published online by Cambridge University Press:  31 May 2012

B. Zelazny
Affiliation:
Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für biologischen Pflanzenschutz, Darmstadt, Germany
M.S. Goettel
Affiliation:
Agriculture and Agri-Food Canada Research Centre, PO Box 3000, Lethbridge, Alberta, Canada T1J 4B1
B. Keller
Affiliation:
Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für biologischen Pflanzenschutz, Darmstadt, Germany
Get access

Abstract

Bacteria have been implicated in disease epizootics observed in field populations and laboratory-reared locusts and grasshoppers. Two species [Serratia marcescens Bizio and Pseudomonas aeruginosa (Schroeter) Migula] consistently infect locusts when ingested with food and can spread in laboratory populations. However, research on developing these organisms for microbial control of locusts and grasshoppers begun in the 1950s has not been continued. In recent years strains of Bacillus thuringiensis Berliner have been studied for activity against locusts and grasshoppers. Results of additional trials by the authors are reported. Among 393 B. thuringiensis isolates and 93 preparations of other sporeforming bacteria fed to nymphs of Locusta migratoria (L.) and/or Schistocerca gregaria Forsk., none has shown any pathogenicity to the insects. The recent discovery of novel B. thuringiensis strains active against various diverse pests and the many properties of a sporeforming bacterium that satisfy the requirements for a microbial control agent, and the development of Serratia entomophila as a promising agent for control of grass grubs, provide incentive to continue the search for an orthopteran-active sporeforming bacterium and to re-investigate the potential of non-sporeforming bacterial pathogens as microbial control agents of grasshoppers and locusts.

Résumé

Des bactéries sont souvent impliquées dans les épizooties qui ravagent les populations naturelles de criquets et les populations expérimentales élevées en laboratoire. Deux espèces [Serratia marcescens Bizio et Pseudomonas aeruginosa (Schroeter) Migula] causent toujours des infections chez les criquets si elles sont ingérées avec la nourriture et peuvent se répandre dans les populations de laboratoire. Cependant, les efforts entrepris dans les années '50 pour raffiner ces organismes de façon à en faire des agents de lutte microbienne contre les criquets ont été arrêtés. Au cours des dernières années, l'efficacité de souches de Bacillus thuringiensis Berliner contre les criquets a été étudiée. Les résultats d'expériences additionnelles par les auteurs sont décrits. De 393 isolats de B. thuringiensis et 93 préparations d'autres bactéries sporogènes donnés en nourriture à Locusta migratoria (L.) et (ou) à Schistocerca gregaria Forsk., aucun ne s'est avéré pathogène pour les insectes. Récemment, la découverte de nouvelles souches de B. thuringiensis efficaces contre divers organismes nuisibles, les propriétés d'une bactérie sporogène qui répond aux critères d'un bon agent de lutte microbienne et l'amélioration des souches de Serratia entomophila, un agent prometteur de lutte contre les vers blancs des herbacées, sont autant de facteurs d'encouragement à continuer la recherche d'une bactérie sporogène efficace contre les orthoptères et à réexaminer le potentiel de bactéries pathogènes non sporogènes comme agents de lutte contre les criquets. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Current address: Plant Protection Service, AGPP, Food and Agriculture Organization of the U.N., Viale delle Terme di Caracalla, 00100 Rome, Italy.

References

Baird, R.B. 1958. Field experiments with Pseudomonas aeruginosa (Schroeter) Migula to control grasshoppers. The Canadian Entomologist 90: 8991.Google Scholar
Beegle, C.C. and Yamamoto, T.. 1992. History of Bacillus thuringiensis Berliner research and development. The Canadian Entomologist 124: 587616.Google Scholar
Bucher, G.E. 1959 a. The bacterium Coccobacillus acridiorum d'Herelle: Its taxonomic position and status as a pathogen of locusts and grasshoppers. Journal of Insect Pathology 1: 331346.Google Scholar
Bucher, G.E. 1959 b. Bacteria of grasshoppers of western Canada: III. Frequency of occurrence, pathogenicity. Journal of Insect Pathology 1: 391405.Google Scholar
Bucher, G.E. 1960. Potential bacterial pathogens of insects and their characteristics. Journal of Insect Pathology 2: 172195.Google Scholar
Bucher, G.E. and Stephens, J.M.. 1957. A disease of grasshoppers caused by the bacterium Pseudomonas aeruginosa (Schroeter) Migula. Canadian Journal of Microbiology 3: 611625.Google Scholar
Bucher, G.E., 1959 a. Bacteria of grasshoppers of western Canada: I. The Enterobacteriaceae. Journal of Insect Pathology 1: 356373.Google Scholar
Bucher, G.E., 1959 b. Bacteria of grasshoppers of western Canada: II. The Pseudomonadaceae, Achromobacteraceae, Micrococcaceae, Brevibacteriaceae, Lactobacillacea, and less important families. Journal of Insect Pathology 1: 374390.Google Scholar
Davidson, E.W. and Yousten, A.A.. 1990. The mosquito larval toxin of Bacillus sphaericus. pp. 237255in de Barrjac, H., and Sutherland, D.J. (Eds.), Bacterial Control of Mosquitoes and Blackflies. Rutgers University Press, New Brunswick, NJ.Google Scholar
Feitelson, J.S., Payne, J. and Kim, L.. 1992. Bacillus thuringiensis: Insects and beyond. Bio/Technology 10: 271275.Google Scholar
Glaser, R.W. 1918. A systematic study of the organisms distributed under the name Cocobacillus acridiorum d'Herelle. Annals of the Entomological Society of America 11: 1942.Google Scholar
Herelle, F. d'. 1911. Sur une épizootie de nature bactérienne sévissant sur les sauterelles au Mexique. Comptes Rendue Academic Sciences, Paris 152: 14131415.Google Scholar
Herelle, F. d'. 1912. Sur la propagation, dans la République Argentine, de l'épizootie des sauterelles du Mexique. Comptes Rendue Academie Sciences, Paris 154: 623625.Google Scholar
Herelle, F. d'. 1914. Le coccobacille des sauterelles. Annales Institut Pasteur 28: 280–328, 387407.Google Scholar
Herelle, F. d'. 1915. Sur le procédé biologique de destruction des sauterelles. Comptes Rendue Academie Sciences, Paris 161: 503505.Google Scholar
Hernandez, Crespo P., Medina, J. Jimenez, Aldebis, H.K., Osuna, E. Vargas and Santiago-Alvarez, C.. 1994. Activity of some Spanish isolates of Bacillus thuringiensis on the Mediterranean locust, Dociostaurus maroccanus. p. 405 in Abstracts, VIth International Colloquium on Invertebrate Pathology and Microbial Control, Montpellier, France, 417 pp.Google Scholar
Ignoffo, C.M., Hostetter, D.L. and Kearby, W.H.. 1973. Susceptibility of walkingstick, orangestriped oakworm, and variable oakleaf caterpillar, to Bacillus thuringiensis var. alesti. Environmental Entomology 2: 807809.Google Scholar
Jackson, T.A., Pearson, J.F. and Stucki, G.. 1986. Control of the grass grub, Costelytra zealandica (White) (Coleoptera: Scarabaeidae), by application of the bacteria Serratia spp. causing honey disease. Bulletin Entomological Research 76: 6976.Google Scholar
Krieg, A. and Langenbruch, G.A.. 1981. Susceptibility of arthropod species to Bacillus thuringiensis. pp. 837896in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases, 1970–1980. Academic Press, London.Google Scholar
Lambert, B. and Peferoen, M.. 1992. Insecticidal promise of Bacillus thuringiensis. BioScience 42(2): 112122.Google Scholar
Lepesme, P. 1937 a. Action de Bacillus prodigiosus et Bacillus pyocyaneus sur le criquet pèlerin (Schistocerca gregaria Forsk). Comptes Rendue Societe biologique 125: 492494.Google Scholar
Lepesme, P. 1937 b. Sur le présence du Bacillus prodigiosus chez le criquet pèlerin (Schistocerca gregaria Forsk). Bulletin Societe historique naturelle de l' Afrique Nord 28: 406411.Google Scholar
Lysenko, O., Davidson, E.W., Lacey, L.A. and Yousten, A.A.. 1985. Five new mosquito larvicidal strains of Bacillus sphaericus from non-mosquito origins. Journal of the American Mosquito Control Association 1: 369371.Google Scholar
Mycogen Corp., 1993. Bacillus thuringiensis active against ants discovered. Society for Invertebrate Pathology Newsletter 25(1): 5.Google Scholar
Prinsloo, H.E. 1960. Parasitiese mikro-organismes by die Bruinsprinkaan Locustana pardalina (Walk.). Suid-Afrikaanse Tydskrif vir Landbouwetenskap 3: 551560.Google Scholar
Prior, C. and Greathead, D.J.. 1989. Biological control of locusts: The potential for the exploitation of pathogens. FAO Plant Protection Bulletin 37(1): 3748.Google Scholar
Rowe, G.E. and Margaritis, A.. 1987. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. CRC Critical Reviews in Biotechnology 6: 87127.Google Scholar
Singer, S. 1990. Introduction to the study of Bacillus sphaericus as a mosquito control agent. pp. 221255in de Barjac, H., and Sutherland, D.J. (Eds.), Bacterial Control of Mosquitoes and Blackflies. Rutgers University Press, New Brunswick, NJ.Google Scholar
Smirnoff, W.A. 1962. A staining method for differentiating spores, crystals, and cells of Bacillus thuringiensis (Berliner). Journal of Insect Pathology 4: 384386.Google Scholar
Steinhaus, E.A. 1951. Report on diagnoses of diseased insects, 1944–1950. Hilgardia 20: 629678.Google Scholar
Stephan, D. 1992. Untersuchungen zur Wirkung verschiedener Bacillus thuringiensis Isolate auf die Heuschreckenarten Locusta migratoria und Schistocerca gregaria. Diplomarbeit, Friedrich-Wilhelms Universität, Bonn. 106 pp.Google Scholar
Stephens, J.M. 1958. Occurrence of Pseudomonas aeruginosa (Schroeter) Migula in the haemoloymph of grasshoppers after infection by feeding. Canadian Journal of Microbiology 4: 191193.Google Scholar
Stephens, J.M. 1959 a. Mucin as an agent promoting infection by Pseudomonas aeruginosa (Schroeter) Migula in grasshoppers. Canadian Journal of Microbiology 5: 7377.Google Scholar
Stephens, J.M. 1959 b. Note on effects of feeding grasshoppers two pathogenic species of bacteria simultaneously. Canadian Journal of Microbiology 5: 313315.Google Scholar
Stevenson, J.P. 1954. An epizootic among laboratory stocks of the desert locust, Schistocerca gregaria Forsk. Nature 174: 222.Google Scholar
Stevenson, J.P. 1959 a. An infection of the desert locust, Schistocerca gregaria Forskal, with a nonchromogenic strain of Serratia marcescens Bizio. Journal of Insect Pathology 1: 129141.Google Scholar
Stevenson, J.P. 1959 b. Epizootiology of a disease of the desert locust, Schistocerca gregaria (Forskal), caused by nonchromogenic strains of Serratia marcescens Bizio. Journal of Insect Pathology 1: 232244.Google Scholar
Tanada, Y. and Kaya, H.K.. 1993. Insect Pathology. Academic Press, New York, NY. 666 pp.Google Scholar
Zelazny, B. and Welling, M.. 1994. Isolation of Bacillus thuringiensis from tropical and subtropical soil samples. Nachrichten Blatt des Deutschen Planzenschultzdienstes 46(9): 192194.Google Scholar