Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-29T09:43:35.516Z Has data issue: false hasContentIssue false

METHODS OF APPLICATION OF MICROBIAL PESTICIDE FORMULATIONS FOR THE CONTROL OF GRASSHOPPERS AND LOCUSTS

Published online by Cambridge University Press:  31 May 2012

Roy Bateman*
Affiliation:
International Institute of Biological Control, Ascot, Berkshire, SL5 7TA, United Kingdom
Get access

Abstract

The use of chemical insecticides, especially as ultra low volume (ULV) formulations, against locusts and grasshoppers will continue for the foreseeable future; therefore application techniques for microbial agents should be as compatible as possible with existing practice. Low volume and ULV spraying of deuteromycete conidia in oil-based formulations have produced very promising acridid control results in the field, although baiting, dusting, and hydraulic application techniques have also been tested for a wide range of pathogens.The key problems for further research and development appear to be the logistics and supply of consistently reliable formulations for application on a large scale, and the determination of mechanisms for effective dose transfer in the field. The application of suspended particulate matter can present special problems with rotary and other atomizers.

Résumé

Les insecticides chimiques, particulièrement en préparation ulta-légères (ULV), risquent d'être utilisés encore fort longtemps dans la lutte contre les criquets; les techniques d'application d'agents microbiens de lutte se doivent donc d'être le plus compatibles possible avec les méthodes courantes. La vaporisation de préparations légères et ultra-légères de conidies de deutéromycètes dans des émulsifiants à base d'huile a déjà donné des résultats très prometteurs dans la lutte contre les criquets en nature; d'autre méthodes, utilisation d'appâts, saupoudrage, techniques d'application hydraulique, ont également été testées pour plusieurs pathogènes.

Les problèmes qui constituent présentement une barrière à la recherche et à l'élaboration d'autres méthodes sont reliés à des questions de logistique et à la difficulté d'obtenir des préparations toujours fiables, utilisables sur une grande échelle, de même qu'à celle de mettre au point des mécanismes de transfert de doses efficaces en nature. Les préparations à base de particules en suspension présentent des problèmes particuliers d'application lorsqu'elles sont répandues au moyen de vaporisateurs rotatoires ou d'autres engins de pulvérisation. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aston, R.P. 1989. The Use of Bacillus thuringiensis (Berliner) for the Control of Heliothis armigera (Hubner) (Lepidoptera: Noctuidae) on Cotton. Ph.D. thesis, Cranfield Institute of Technology, Department of Bio-Aeronautics.Google Scholar
Bateman, R.P. 1989. Controlled Droplet Application of Particulate Suspensions of a Carbamate Insecticide. Ph.D. thesis, University of London.Google Scholar
Bateman, R.P. 1992. Controlled droplet application of mycopesticides to locusts, pp. 249–254 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Bateman, R.P. 1994. Physical properties and atomisation of ULV formulations of myco-insecticides. pp. 189192in Smits, P.H. (Ed.), Microbial Control of Pests. IOBC wprs Bulletin 17(3).Google Scholar
Bateman, R.P., Carey, M., Moore, D. and Prior, C.. 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Annals of Applied Biology 122: 145152.Google Scholar
Bateman, R.P., Godonou, I., Kpindu, D., Lomer, C.J. and Paraiso, A.. 1992. Development of a novel “field bioassay” technique for assessing mycopesticide U.L.V. formulations, pp. 255–262 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394.Google Scholar
Bateman, R.P., Price, R.E., Müller, E.J. and Brown, H.D.. 1994. Controlling brown locust hopper bands in South Africa with a myco-insecticide spray, pp. 609616in Brighton Crop Protection Conference—Pests and Diseases—1994. British Crop Protection Council, Famham, UK.Google Scholar
Bennett, L.V. and Symmons, P.M.. 1972. A Review of Estimates of the Effectiveness of Certain Control Techniques and Insecticides against the Desert Locust. Anti-Locust Bulletin 50: 15 pp.Google Scholar
Bidochka, M.J. and Khachatourians, G.G.. 1991. Microbial and protozoan pathogens of grasshoppers and locusts as potential biocontrol agents. Biocontrol Science and Technology 1: 243259.Google Scholar
Bouachi, A., Coppen, G.D.A. and Jepson, P.C.. 1993. Barrier spray treatments with diflubenzuron (ULV) against gregarious hopper bands of the Moroccan locust Dociostaurus maroccanus (Thunberg) (Orthoptera: Acrididae) in N.E. Morocco. Crop Protection 13: 6072.Google Scholar
Clay, M.M. and Clarke, S.W.. 1987. Effect of nebulised aerosol size on lung deposition in patients with mild asthma. Thorax 42: 190194.Google Scholar
Clayton, J.S. 1992. New developments in Controlled Droplet Application (CDA) techniques for small farmers in developing countries—opportunities for formulation and packaging, pp. 333341in Brighton Crop Protection Conference—Pests and Diseases—1992. British Crop Protection Council, Farnham, UK.Google Scholar
Clayton, J.S. 1993. Ground Spraying Requirements for Locust Control. Paper presented to FAO International Workshop, Marrakech, May 1993.Google Scholar
Courshee, R.J. 1959. Drift spraying for vegetation baiting. Bulletin of Entomological Research 50: 355369.Google Scholar
Courshee, R.J. 1991. Desert locusts and their control. International Pest Control 32(1): 1618.Google Scholar
Coutts, H.H. and Parish, R.H.. 1967. The selection of a solvent for use with low volume aerial spraying of cotton plants. Agricultural Aviation 9: 25127.Google Scholar
Douro-Kpindu, O.-K., Godonou, I., Houssou, A., Lomer, C.J. and Shah, P.A.. 1995. Control of Zonocerus variegatus by ULV application of an oil formulation of Metarhizium flavoviride conidia. Biocontrol Science and Technology 5: 131139.Google Scholar
Feng, M.G., Poprawski, T.J. and Khachatourians, G.G.. 1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Science and Technology 4: 334.Google Scholar
Food and Agriculture Organisation of the United Nations (FAO). 1992. The Desert Locust Guidelines, IV: Control. Symmons, P. (Ed.), Food and Agriculture Organisation Booklet. 64 pp.Google Scholar
Food and Agriculture Organisation of the United Nations (FAO). 1993. FAO International Workshop on Research and Planning for Desert Locust Control Held at Marrakech, Morocco, 24–28 May 1993.Google Scholar
Food and Agriculture Organisation of the United Nations (FAO). 1994. FAO Commission for Controlling Desert Locust in the Near East: Workshop on Spray Equipment used in Desert Locust Control; held at Cairo, Egypt, 21–23 August 1994.Google Scholar
Ford, M.G. and Salt, D.W.. 1987. The behaviour of pesticide deposits and their transfer from plant to insect surfaces. pp. 2681in Cottrel, H.J. (Ed.), Pesticides on Plant Surfaces. Critical Reports on Applied Chemistry 18. Wiley and Sons, New York, NY.Google Scholar
Foster, R.N., Reuter, K.C., Bradley, C.A. and Wood, P.P.. 1992. Preliminary investigations on the effect of Beauveria bassiana on several species of rangeland grasshoppers. USDA Cooperative Grasshopper Integrated Pest Management Project—1991 Annual Report: 203210.Google Scholar
Goettel, M.S. and Roberts, D.W.. 1992. Mass production, formulation and field application of entomopathogenic fungi, pp. 230–238 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Griffiths, J. and Bateman, R.P. 1997. Evaluation of the Francome MkII Exhaust Nozzle Sprayer to apply oil-based formulations of Metarhizium flavoviride for locust control. Pesticide Science 51.Google Scholar
Hall, F.R., Chapple, A.C., Taylor, R.A.J. and Downer, R.A.. 1994. Dose transfer of Bacillus thuringiensis from cabbage to the diamond back moth: A graphical simulator. Journal of Environmental Science and Health B29(4): 661678.Google Scholar
Henry, J.E. and Onsager, J.A.. 1984. Experimental control of the Mormon cricket, Anabrus simplex, by Nosema locustae (Microspora: Microsporida), a protozoan parasite of grasshoppers (Orthoptera: Acrididae). Entomophaga 27: 197201.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1993. Persistence of the entomopathogenic fungus, Beauveria bassiana on Phylloplanes of crested wheatgrass and alfalfa. Biological Control 3: 258270.Google Scholar
Jago, N.D., Kremer, A.R. and West, C.. 1993. Pesticides on Millet in Mali. Natural Resources Institute Bulletin 50: iv + 45 pp.Google Scholar
Jarrett, P. and Burges, H.D.. 1982. Use of fogs to disseminate pathogens, pp. 4954in Invertebrate Pathology and Microbial Control. Proceedings 3rd International Colloquium on Invertebrate Pathology, University of Sussex, 6–10 September 1982.Google Scholar
Jenkins, N.E. and Goettel, M.S.. 1997. Methods for mass-production of microbial control agents of grasshoppers and locusts, pp. 37–48 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Jiminez, J. and Gillespie, A.T.. 1990. Use of the optical brightener Tinopal BOPT for the rapid determination of conidial viabilities in entomophagous deuteromycetes. Mycological Research 94: 279283.Google Scholar
Johnson, D.L. 1989. The effects of timing and frequency of application of Nosema locustae (Microspora: Microsporida) on the infection rate and activity of grasshoppers (Orthoptera: Acrididae). Journal of Invertebrate Pathology 54: 353362.Google Scholar
Johnson, D.L. 1997. Nosematidae and other Protozoa as agents for control of grasshoppers and locusts: Current status and prospects, pp. 375–389 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Johnson, D.L. and Goettel, M.S.. 1993. Reduction of grasshopper populations following field application of the fungus Beauveria bassiana. Biocontrol Science and Technology 3: 165175.Google Scholar
Johnson, D.L., Goettel, M.S., Bradley, C., van der Paaw, H. and Maiga, B.. 1992. Field trials with the entomopathogenic fungus Beauveria bassiana against grasshoppers in Mali, West Africa, July 1990. pp. 296–310 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Johnson, D.L. and Henry, J.E.. 1987. Low rates of insecticides and Nosema locustae (Microsporidia: Nosematidae) on baits applied to roadsides for grasshopper (Orthoptera: Acrididae) control. Journal of Economic Entomology 80: 685689.Google Scholar
Johnson, D.L., Huang, H.C. and Harper, A.M.. 1988. Mortality of grasshoppers (Orthoptera: Acrididae) inoculated with a Canadian isolate of the fungus Verticillium lecanii. Journal of Invertebrate Pathology 52: 335342.Google Scholar
Johnstone, D.R. 1991. Variations in insecticide dose received by settled locusts: A computer model for ultra-low-volume spraying. Crop Protection 10(3): 183194.Google Scholar
Joshi, L., Charnley, A.K., Arnold, G., Brain, P. and Bateman, R.P.. 1992. Synergism between entomopathogenic fungi, Metarhizium spp., and the benzoylphenyl urea insecticide, teflubenzuron, against the desert locust, Schistocerca gregaria. pp. 369374 in Brighton Crop Protection Conference—Pests and Diseases—1992. British Crop Protection Council, Farnham, UK.Google Scholar
Kooyman, C., Bateman, R.B., Langewald, J., Lomer, C.J., Ouambama, Z. and Thomas, M.B. 1997. Operational-scale application of entomophathogenic fungi for the control of Sahelian grasshoppers. Proceedings of the Royal Society of London B, 264, 541546.Google Scholar
Brito, J.M., and Henry, J.E.. 1992. Biological control of grasshoppers in the Cape Verde Islands. pp. 287–295 in C.J., Lomer, and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Lockwood, J.A. 1989. Ontogeny of cannibalism in rangeland grasshoppers (Orthoptera: Acrididae). Journal of the Kansas Entomological Society 62: 534541.Google Scholar
Lockwood, J.A. and Debrey, L.D.. 1990. Direct and indirect effects of a large-scale application of Nosema locustae (Microsporida: Nosematidae) on rangeland grasshoppers (Orthoptera: Acrididae). Journal of Economic Entomology 83: 377383.Google Scholar
Lomer, C.J., and Prior, C. (Eds.). 1992. Biological Control of Locusts and Grasshoppers. [Proceedings of a workshop held at the International Institute of Tropical Agriculture, Cotonou, Republic of Benin, 29 April–1 May 1991.] CAB International, UK. 394 pp.Google Scholar
Lomer, C.J., Prior, C. and Kooyman, C.. 1997. Development of Metarhizium spp. for the control of grasshoppers and locusts, pp. 265–286 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
MacCuaig, R.D. and Watts, W.S.. 1963. Laboratory studies to determine the effectiveness of DDVP sprays for the control of locusts. Journal of Economic Entomology 56(6): 850859.Google Scholar
MacCuaig, R.D. and Yeates, M.N.D.B.. 1972. Theoretical Studies on the Efficiency of Insecticidal Sprays for the Control of Flying Locust Swarms. Anti-Locust Bulletin 49: 34 pp.Google Scholar
Matthews, G.A. 1992 a. The principles of ultra-low volume spraying in relation to the application of microbial insecticides for locust control, pp. 245–248 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Matthews, G.A. 1992 b. Pesticide Application Methods, 2nd ed. Longman Scientific and Technical, Harlow, Essex. 405 pp.Google Scholar
Meneley, J.C. and Sluss, T.P.. 1988. Development of ‘NOLO Bait’ Nosema locustae for the control of grasshoppers and locusts, pp. 597602in Brighton Crop Protection Conference—Pests and Diseases—1988. British Crop Protection Council, Farnham, UK.Google Scholar
Moore, D. and Caudwell, R.W.. 1997. Formulation of entomopathogens for the control of grasshoppers and locusts. pp. 49–67 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Nguyen, N.T. 1980. Insecticide acquisition by drift sprayed hoppers, pp. 7885in Australian Plague Locust Commission, Annual Report Research Supplement 1979–80.Google Scholar
Nguyen, N.T. and Watt, J.W.. 1981. The distribution and recovery of aerial ultra-low volume sprays for controlling nymphs of the Australian plague locust, Chortoicetes terminifera Walker. Journal of the Australian Entomological Society 20: 269275.Google Scholar
Price, R.E., Bateman, R.P., Brown, H.D., Butler, E.T., and Müller, E.J. 1997 (in press) Aerial spray trials against brown locust (Locustana pardalina, Walker) nymphs in South Africa using oil-based formulations of Metarhizium flavoviride. Crop Protection 16.Google Scholar
Prior, C. and Streett, D. A.. 1997. Strategies for the use of entomopathogens in the control of the desert locust and other acridoid pests, pp. 5–25 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Rainey, R.C. and Sayer, H.J.. 1953. Some recent developments in the use of aircraft against flying locust swarms. Nature 172: 224228.Google Scholar
Richards, M.G. 1984. The Use of a Granulosis Virus for Control of Codling Moth, Cydia pomonella; Application Methods and Field Persistence. Ph.D. thesis, University of London.Google Scholar
Scherer, R. and Rakotonandrasana, M.A.. 1993. Barrier treatment with a benzoyl urea insect growth regulator against Locusta migratoria capito (Sauss) hopper bands in Madagascar. International Journal of Pest Management 39(4): 411417.Google Scholar
Shapiro, M. and Robertson, J.L.. 1992. Enhancement of gypsy moth (Lepidoptera: Lymantriidae) baculovirus activity by optical brighteners. Journal of Economic Entomology 85(4): 11201124.Google Scholar
Smith, D.B. and Bouse, L.F.. 1981. Machinery and factors that affect the application of pesticides, pp. 635653in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases (1970–1980). Academic Press, London.Google Scholar
Staniland, L.N. 1959. Fluorescent tracer techniques for the study of spray and dust deposits. Journal of Agricultural Engineering Research 4(3): 4281.Google Scholar
Steedman, A. (Ed.). 1988. Locust Handbook, 2nd ed. Natural Resources Institute, London, vii+180 pp.Google Scholar
Sundaram, A. and Retnakaran, A.. 1987. Influence of formulation properties on droplet size spectra and ground deposits of aerially-applied pesticides. Pesticide Science 20: 241257.Google Scholar
Symmons, P. 1992. Strategies to combat the desert locust. Crop Protection 11: 206211.Google Scholar
Symmons, P.M., Boase, C.J., Clayton, J.S. and Gorta, M.. 1989. Controlling desert locust nymphs with bendiocarb applied by a vehicle-mounted spinning-disc sprayer. Crop Protection 8: 324331.Google Scholar
Symmons, P.M., Dobson, H.M. and Sissoko, M.. 1991. Pesticide droplet size and efficacy: A series of trials on grasshoppers. Crop Protection 10: 136.Google Scholar
Thomas, M.B., Wood, S.N. and Lomer, C.J.. 1995. Biological control of locusts and grasshoppers using a fungal pathogen: The importance of secondary cycling. Proceedings of the Royal Society, London B 259: 265270.Google Scholar
U.S. Congress, Office of Technology Assessment. 1990. A Plague of Locusts—Special Report. Washington DC: U.S. Government Printing Office OTA–F–450: 129 pp.Google Scholar
Watts, W.S., Thornhill, E.W., Davies, A.L. and Matthews, G.A.. 1976. The primary evaluation of the Evers and Wall mk. II exhaust nozzle sprayer. Centre for Overseas Pest Research, Miscellaneous Report 28: 6 pp.Google Scholar
Wodageneh, A. and Matthews, G.A.. 1981. Addition of oil to pesticide sprays—Downwind movement of droplets. Tropical Pest Management 27(4): 501504.Google Scholar
World Health Organisation (WHO). 1961. Specifications for Pesticides, 2nd ed. World Health Organisation, Geneva, WHOISIF: 523 pp.Google Scholar
Yin, F.M. 1981. Screening and application of ultra low volume diluents of Beauveria bassiana preparation. Forest Science and Technology (Linye Keji Tongxun) 11: 2528.Google Scholar
Young, B.W. 1986. The need for greater understanding in the application of pesticides. Outlook on Agriculture 15(2): 8087.Google Scholar