Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-10T21:08:46.076Z Has data issue: false hasContentIssue false

METHODS FOR MASS-PRODUCTION OF MICROBIAL CONTROL AGENTS OF GRASSHOPPERS AND LOCUSTS

Published online by Cambridge University Press:  31 May 2012

Nina E. Jenkins
Affiliation:
International Institute of Biological Control, Silwood Park, Ascot, SL5 7TA, United Kingdom
Mark S. Goettel
Affiliation:
Agriculture and Agri-Food Canada Research Centre, PO Box 3000, Lethbridge, AB Canada, T1J 4B1
Get access

Abstract

The success of microbial control programmes often depends on an adequate mass-production method for the agent used. The pathogens with potential for use against grasshoppers and locusts vary widely in the ease with which they can be mass-produced. Obligate pathogens such as grasshopper entomopoxviruses, mermithid nematodes and Nosema locustae Canning are currently restricted to culture in living systems. Liquid fermentation is usually employed for the production of non-obligate pathogens such as bacteria, some fungi and nematodes, but in some cases the propagules produced in liquid culture are not amenable to formulation and application. Conidia of hyphomycete fungi can be produced on the surface of liquid media, on solid substrates or in diphasic systems. Production on solid substrates has been adopted for production of steinernematid and heterorhabditid nematodes and some fungi. Diphasic liquid-solid fermentation combines the benefits of both systems and is used mostly for mass-production of hyphomycete fungi such as Metarhizium flavoviride Gams & Rozsypal and Beauveria bassiana (Balsamo) Vuillemin. Increased commercial interest in biological control is likely to accelerate the development of improved and more economical methods for the mass-production of microbial control agents.

Résumé

Le succès des programmes de lutte biologique microbienne suppose bien souvent l'utilisation d'une méthode adéquate de production en masse de l'agent utilisé. La facilité de production des pathogènes susceptibles d'être efficaces contre les criquets varie considérablement. Les pathogènes obligés, comme les entomopoxviruses des criquets, les nématodes mermithidés et Nosema locustae Canning sont actuellement restreints aux cultures dans des systèmes vivants. La fermentation liquide est la méthode ordinairement utilisée dans la production de pathogènes non obligés comme les bactéries et certains champignons et nématodes. Cependant, en certains cas, les propagules produit en liquide ne sont pas utilisables lors de la préparation et de l'application. Les conidies des champignons hyphomycètes peuvent être produites à la surface de milieux liquides, sur des substrats solides ou dans des systèmes à deux phases. Les substrats solides ont été adoptés pour la production de nématodes steinetnématidés et hétérorhabditidés et de certains champignons. La fermentation biphasique liquide-solide comporte les avantages des deux systèmes et sert surtout dans la production de champignons hyphomycètes tels Metarhizium flavoviride Gams et Rozsypal et Beauveria bassiana (Balsamo) Vuillemin. L'intérêt accru pour la lutte biologique sur une base commerciale accélérera sans doute l'apparition des méthodes améliorées et plus économiques de production en masse d'agents microbiens de lutte biologique. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, O.C., Valarini, P.J., Cruz, B.P. Bastos, Oliveira, D.A. and Gabriel, D.. 1987. Studies of the effect of storage conditions on the viability and pathogenicity of spores of Metarhizium anisopliae (Metsch.) Sorokin. Entomology Newsletter. 18:2.Google Scholar
Adamek, L. 1963. Submersed cultivation of the fungus Metarhizium anisopliae (Metsch.). Folia Microbiologia (Praha) 10: 255257.Google Scholar
Agathos, S.N. 1991. Mass production of viral insecticides, pp. 217235in Maramorosch, K. (Ed.). Biotechnology for Biological Control of Pests and Vectors. CRC Press, Boca Raton, Florida.Google Scholar
Alves, S.B., Neto, S. Silveira, Pereira, R.M. and Macedo, N.. 1987. Estudo de formulacoes do Metarhizium anisopliae (Metsch.) Sorok. em diferentes condicoes de armazenamento. Ecossistema. 12: 7887.Google Scholar
Andersch, W., Hartwig, J., Reinecke, P. and Stenzel, K.. 1990. Production of mycelial granules of the entomopathogenic fungus Metarhizium anisopliae for biological control of soil pests, pp. 25in Proceedings and Abstracts of the 5th International Colloquium Invertebrate Pathology & Microbial Control. Adelaide, 20–24 August.Google Scholar
Baker, G.L. and Capinera, J.L.. 1997. Nematodes and nematomorphs as control agents of grasshoppers and locusts. pp. 157–211 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Bartlett, M.C. and Jaronski, S.T.. 1988. Mass production of entomogenous fungi for biological control systems. pp. 61–85 in Burge, M.N. (Ed.) Fungi in Biological Control Systems. Manchester University Press, Manchester, UK.Google Scholar
Beegle, C.C., Rose, R.I. and Ziniu, Y.. 1991. Mass production of Bacillus thuringiensis and B. sphaericus for microbial control of insect pests, pp. 195–216 in Maramorosch, K. (Ed.). Biotechnology for Biological Control of Pests and Vectors. CRC Press, Boca Raton, Florida.Google Scholar
Bedding, R.A. 1984. Large scale production, storage and transport of the insect parasitic nematodes Neoaplectana spp. and Heterorhabditis spp. Annals of Applied Biology. 104: 117120.Google Scholar
Bedding, R.A., Stanfield, M.S. and Crompton, G.W.. 1991. Apparatus and Method for Rearing Nematodes, Fungi, Tissue Cultures and the Like and for Harvesting Nematodes. International Patent Application No. PCT/AU91/00136.Google Scholar
Bidochka, M.J., Pfeifer, T.A. and Khachatourians, G.G.. 1987. Development of the entomopathogenic fungus Beauveria bassiana in liquid cultures. Mycopathologia 99: 7783.Google Scholar
Bradley, C.A., Black, W.E., Kearns, R. and Wood, P.. 1992. Role of production technology in mycoinsecticide development, pp. 160173in Leatham, G.F. (Ed.) Frontiers in Industrial Mycology. Chapman and Hall, New York, NY.Google Scholar
Brooks, W.M. 1988. Entomogenous protozoa, pp. 149in Ignoffo, C.M. (Ed.) CRC Handbook of Natural Pesticides. Volume V. Microbial Insecticides. Part A, Entomogenous Protozoa and Fungi. CRC Press, Boca Raton, FL.Google Scholar
Campbell, R.K., Barnes, G.L., Cartwright, B.O. and Erkenbary, R.D.. 1983. Growth and sporulation of Beauveria bassiana in a basal medium containing various carbohydrate sources. Journal of Invertebrate Pathology 41: 117121.Google Scholar
Carruthers, R.I., Ramos, M.E., Larkin, T.S., Hostetter, D.L. and Soper, R.S.. 1997. The Entomophaga grylli (Fresenius) Batko species complex: Its biology, ecology and use for biological control of pest grasshoppers. pp. 329–353 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400pp.Google Scholar
Dorta, B., Bosch, A., Areas, J.A. and Ertola, R.J.. 1990. High level of sporulation of Metarhizium anisopliae in a medium containing by-products. Applied Microbiology and Biotechnology 33: 712715.Google Scholar
Feng, M.G., Poprawski, T.J. and Khachatourians, G.G.. 1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Science and Technology 4: 334.Google Scholar
Ferron, P. 1981. Pest control by the fungi Beauveria and Metarhizium. pp. 465482in Burges, H.D. (Ed.), Microbial Control of Pests and Diseases 1970–1980. Academic Press, London.Google Scholar
Friedman, M.J. 1990. Commercial production and development, pp. 153172in Gaugler, R. and Kaya, H.K. (Eds.), Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, FL.Google Scholar
Friedman, M.J., Langston, S.L. and Pollit, S.. 1989. Mass Production in Liquid Culture of Insect-killing Nematodes. International Patent WO 89/04602.Google Scholar
Georgis, R. 1992. Present and future prospects for entomopathogenic nematode products. Biocontrol Science and Technology 2: 8399.Google Scholar
Goettel, M.S. 1984. A simple method for mass culturing entomopathogenic hyphomycete fungi. Journal of Microbiological Methods 3: 1520.Google Scholar
Goettel, M.S. 1992. Fungal agents for biological control, pp. 122–132 in Lomer, C.J. & Prior, C. (Eds.). Biological Control of Locusts and Grasshoppers, CAB International, UK. 394 pp.Google Scholar
Goettel, M.S. 1994. Directory of industries involved in the development of microbial control products (supplement # 2). Society for Invertebrate Pathology Newsletter 26(1): Suppl. 2. 4 pp.Google Scholar
Goettel, M.S. and Roberts, D.W.. 1992. Mass production, formulation and field application of entomopathogenic fungi, pp. 230–238 in Lomer, C.J. & Prior, C. (Eds.). Biological Control of Locusts and Grasshoppers, CAB International, UK. 394 pp.Google Scholar
Goettel, M.S., Sweeney, A.W. and Roberts, D.W.. 1989. Effects of drying and rehydration on mycelia of the mosquito pathogenic fungi Culicinomyces clavisporus and Tolypocladium cylindrosporum. Mycologia 81: 472475.Google Scholar
Hegedus, D.D., Bidochka, M.J., Miranpuri, G.S. and Khachatourians, G.G.. 1992. A comparison of the virulence, stability and cell-wall-surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Applied Microbiology and Biotechnology 36: 785789.Google Scholar
Hegedus, D.D., Bidochka, M.J. and Khachatourians, G.G.. 1990. Beauveria bassiana submerged conidia production in a defined medium containing chitin, two hexosamines or glucose. Applied Microbiology and Biotechnology 33: 641647.Google Scholar
Henry, J.E. 1985. Effect of grasshopper species, cage density, light intensity and method of inoculation on mass production of Nosema locustae (Microsporidia:Nosematidae). Journal of Economic Entomology 78: 12451250.Google Scholar
Henry, J.E. and Oma, E.A.. 1981. Pest Control by Nosema locustae, a pathogen of grasshoppers and crickets. pp. 573585in Burges, H.D. (Ed.) Microbial Control of Pests and Plant Diseases 1970-1980. Academic Press, London.Google Scholar
Higby, G.C., Canning, E.U., Pilley, B.M. and Bush, P.J.. 1979. Propagation of Nosema eurytremae (Microsporidia:Nosematidae) from trematode larvae in abnormal hosts and in tissue culture. Parasitology 78: 155170.Google Scholar
Hussey, N.W. and Tinsley, T.W.. 1981. Impressions of insect pathology in the People's Republic of China pp 785–795 in Burges, H.D. (Ed.) Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, London.Google Scholar
Ibrahim, Y.B. and Low, W.. 1993. Potential of mass-production and field efficacy of isolates of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus against Plutella xylostella. International Journal of Pest Management 39: 288292.Google Scholar
Jaronski, S.T. and Goettel, M.S.. 1997. Development of Beauveria bassiana for control of grasshoppers and locusts. pp. 225–237 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Jenkins, N.E. and Lomer, C.J.. 1994. Development of a new procedure for the mass production of conidia of Metarhizium flavoviride pp 181–184 in Smits, P.H. (Ed.) Microbial Control of Pests, 4th European Meeting, IOBC/WPRS Bulletin 17 (3).Google Scholar
Jenkins, N.E. and Prior, C.. 1993. Growth and formation of true conidia by Metarhizium flavoviride in a simple liquid medium. Mycolological Research 97: 14891494.Google Scholar
Jenkins, N.E. and Thomas, M.B.. 1996. Effect of formulation and application method on the efficacy of aerial and submerged conidia of Metarhizium flavoviride for locust and grasshopper control. Pesticide Science 46: 229306.Google Scholar
Johnson, D.L., 1997. Nosematidae and other Protozoa as agents for control of grasshoppers and locusts: Current status and prospects, pp. 375–389 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Johnson, D.L., Goettel, M.S., Bradley, C., van der Paauw, H. and Maiga, B.. 1992. Field trials with the entomopathogenic fungus Beauveria bassiana against grasshoppers in Mali, West Africa, July, 1990. pp. 296–310 in Lomer, C.J. & Prior, C. (Eds.). Biological Control of Locusts and Grasshoppers, CAB International, UK. 394 pp.Google Scholar
Keller, S. 1992. The Beauveria-Melolontha project: experiences with regard to locust and grasshopper control. pp. 279–286 in Lomer, C.J. & Prior, C. (Eds.). Biological Control of Locusts and Grasshoppers, CAB International, UK. 394 pp.Google Scholar
Khurad, A.M., Raina, S.K. and Pandharipande, T.N.. 1991. In vitro propagation of Nosema locustae using a fat body cell line derived from Mythimna convecta (Lepidoptera: Noctuidae). Journal of Protozoology 38: 91S93S.Google Scholar
Kleespies, R.G. and Zimmermann, G.. 1992. Production of blastospores by three strains of Metarhizium anisopliae (Metch.) Sorokin in submerged culture. Biocontrol Science and Technology 2: 127135.Google Scholar
Kurtti, T.J.Tsang, K.R. and Brooks, M.A.. 1983. The spread of infection by the microsporidian, Nosema disstriae in insect cell lines. Journal of Protozoology 30: 652657.Google Scholar
Kybal, J. and Vlcek, V.. 1976. A simple device for stationary cultivation of microorganisms. Biotechnology and Bioengineering 18: 17131718.Google Scholar
Latge, J.P., Hall, R.A., Cabrera, R.I. Cabrera and Kerwin, J.C.. 1986. Liquid fermentation of entomopathogenic fungi. pp. 603604in Samson, R.A., Vlak, J.M. and Peters, D. (Eds.). Fundamental and Applied Aspects of Invertebrate Pathology. Foundation of the Fourth International Colloquium of Invertebrate Pathology, Wageningen, The Netherlands.Google Scholar
Latge, J.P. and Moletta, R.. 1988. Biotechnology. pp. 152172in Samson, R.A., Evans, H.C. and Latge, J.P. (Eds.). Atlas of Entomopathogenic Fungi. Springer-Verlag, Berlin.Google Scholar
Lisansky, S.G. and Hall, R.A.. 1982. Fungal control of insects, pp. 127345in Smith, J.E., Berry, P.R. and Kristonson, B. (Eds.), The Filamentous Fungi. Edward Arnold, London.Google Scholar
Lomer, C.J., Prior, C. and Kooyman, C.. 1997. Development of Metarhizium spp. for the control of grasshoppers and locusts, pp. 265–286 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Luckow, V.A. 1991. Cloning and expression of heterologous genes in insect cells with baculovirus vectors. pp. 97152in Prokop, A., Bajpai, R.K. and Ho, C.S. (Eds.), Recombinant DNA Technology and Applications. McGraw-Hill, New York, NY.Google Scholar
Marques, E.J., Vilas, A.M. Boas, and Pereira, C.E.F.. 1981. Orientacoes technicas para a producao do fungo entomogeno Metarhizium anisopliae (Metschn.) em laboratorios setoriais. Boletim Technico PLANALSUCAR, Piracicaba 3: 523.Google Scholar
McCabe, D. and Soper, R.S.. 1985. Preparation of An Entomopathogenic Fungal Insect Control Agent. US Patent No. 4,530,834.Google Scholar
McGuire, M.R., Streett, D.A. and Shasha, B.S.. 1991. Evaluation of starch encapsulation for formulation of grasshopper (Orthoptera: Acrididae) Entomopoxviruses. Journal of Economic Entomology 84: 16521656.Google Scholar
Mendonca, A.F. 1992. Mass production, application and formulation of Metarhizium anisopliae for control of sugarcane froghopper, Mahanarva posticata, in Brazil, pp. 239–244 in Lomer, C.J. and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Milner, R.J. 1997. Metarhizium flavoviride (FI985) as a promising mycoinsecticide for Australian acridids. pp. 287–300 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Moore, D. and Caudwell, R.. 1997. Formulation of entomopathogens for the control of grasshoppers and locusts. pp. 49–67 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Oma, E.A. and Streett, D.A.. 1993. Production of a grasshopper entomopoxvirus (Entomopoxvirinae) in Melanoplus sanguinipes (F.) (Orthoptera: Acrididae). Canadian Entomologist 125: 11311133.Google Scholar
Pereira, R.M. and Roberts, D.W.. 1990. Dry mycelium preparations of entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. Journal of Invertebrate Pathology 56: 3946.Google Scholar
Rombach, M.C. 1989. Production of Beauveria bassiana [Deuteromycotina. Hyphomycetes] sympoduloconidia in submerged culture. Entomophaga 34: 4552.Google Scholar
Rombach, M.C., Aguda, R.M. and Roberts, D.W.. 1988. Production of Beauveria bassiana (Deutero-mycotina:Hyphomycetes) in different liquid media and subsequent conidiation of dry mycelium. Entomophaga 33: 315324.Google Scholar
Soper, R.S. and Ward, M.G.. 1981. Production, formulation and application of fungi for insect control, pp. 161180in Papavizas, G.C. (Ed.), Biological Control in Crop Production, BARC Symposium No. 5. Allanheld, Osmun, Montclair, NJ.Google Scholar
Stockdale, H. and Priston, R.A.J.. 1981. Production of insect viruses in cell culture, pp. 313328in Burges, H.D. (Ed.), Microbial Control of Pests and Diseases, 1970–1980. Academic Press, London.Google Scholar
Streett, D.A., Ralph, D. and Hink, W.F.. 1980. Replication of Nosema algerae in three insect cell lines. Journal of Protozoology 27: 113117.Google Scholar
Streett, D.A., Woods, S.A. and Erlandson, M.. 1997. Entomopoxviruses of grasshoppers and locusts: Biology and biological control potential. pp. 115–130 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Tanada, Y. and Kaya, H.K.. 1993. Microbial Control, pp. 554594in Tanada, Y. and Kaya Insect, H.K.Pathology. Academic Press, San Diego, CA.Google Scholar
Thomas, K.C., Khachatourians, G.G. and Ingledew, W.M.. 1987. Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Canadian Journal of Microbiology 33: 1220.Google Scholar
Trinci, A.P.J., Lane, B.S. and Humphreys, A.M.. 1990. Optimisation of cultural conditions for the production and longevity of entomopathogenic fungi. pp. 116120in Proceedings and Abstracts of the Fifth International Colloquium on Invertebrate Pathology and Microbial Control. Adelaide, Australia, 20–24 August.Google Scholar
van Winkelhof, A.J. and Mc Coy, C.W.. 1984. Conidiation of Hirsutella thompsonii var. synnematosa in submerged culture. Journal of Invertebrate Pathology 43: 5968.Google Scholar
Zelazny, B., Goettel, M.S. and Keller, B.. 1997. The potential of bacteria for the microbial control of grasshoppers and locusts, pp. 147–156 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar