Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T13:53:11.368Z Has data issue: false hasContentIssue false

GROUNDPLAN STRUCTURE AND HOMOLOGY OF THE PLEURON IN HYMENOPTERA BASED ON A COMPARISON OF THE SKELETOMUSCULATURE OF XYELIDAE (HYMENOPTERA) AND RAPHIDIIDAE (NEUROPTERA)

Published online by Cambridge University Press:  31 May 2012

Gary A.P. Gibson*
Affiliation:
Biological Resources Division, Centre for Land and Biological Resources Research, Agriculture Canada Research Branch, Ottawa, Ontario, Canada K1A 0C6
Get access

Abstract

The groundplan structure and homologies of the mesothoracic pleurosternum of Hymenoptera are postulated using the subcoxal theory of the origin of the pterothoracic pleura of insects, and the cryptosternite theory of an invaginated sternum in most holometabolous insects, based on a comparison of the skeletomusculature of Xyelidae (Hymenoptera) and Raphidiidae (Neuroptera). The following are hypothesized for Hymenoptera: (1) the mesosternum is invaginated except for the prepectus, which is a detached remnant of the presternum; (2) lines that delineate ventral regions on the mesepisternum of many Symphyta are secondarily evolved sulci and arc not pleurosternal sutures; (3) a basalar cleft and an anepisternum are present in the groundplan structure; (4) in Hymenoptera other than Xyelidae the basalar cleft and anapleural cleft intersect so the anepisternum is detached as a separate sclerite, the postspiracular sclerite; (5) the pre-episternum is enlarged secondarily at the expense of the katepisternum, resulting in the paracoxal suture and a narrow katepisternum closely paralleling the posteroventral margin of the episternum anterior to the mesocoxa; (6) the mesepimeron is not divided into an anepimeron and katepimeron by a paracoxal suture but in some taxa is divided secondarily into an upper and lower mesepimeron by marks that delineate the line of confluence between different sets of muscles; and (7) the trochantin is absent from the groundplan structure. Postulated homologies support the hypothesis that Xyelidae represent the basal lineage of Hymenoptera but do not support the hypothesis that the rest of Hymenopera had a biphyletic origin from Xyelidae. The study exemplifies the positive feedback relationship between morphology and systematics and demonstrates the necessity of systematics and phylogenctic hypotheses for testing hypotheses of homology derived through comparative morphology. Schematic figures illustrate the subcoxal theory of pleuron origin and the postulated groundplan of the hymenopteran mesopleuron; mesothoracic muscles that were studied to help homologize pleurosternal features between Xyelidae and Raphidiidae are tabulated and skeletomusculature is documented by scanning electron photomicrographs.

Résumé

L'hypothèse sur la structure de base et les homologies du pleurosternum mésothoracique des Hyménoptères formulée ici est fondée sur la théorie subcoxale de l'origine des pleures ptérothoraciques des insectes et sur la théorie cryptosternale d'un sternum invaginé chez la plupart des insectes holométaboles, de même que sur la comparaison des musculatures squelettiques des Xyelidae (Hymenoptera) et des Raphidiidae (Neuroptera). Un certain nombre d'hypothèses sur les Hyménoptères sont avancées : (1) le mésosternum est invaginé, à l'exception du prépectus qui est un vestige détaché du présternum; (2) les lignes qui délimitent les régions ventrales du mésépisternum chez plusieurs Symphites sont des sulcus apparus ultérieurement et non des sutures pleurosternales; (3) un sillon basalaire et un anepisternum font partie de la structure de base; (4) chez les Hyménoptères à l'exception des Xyelidae, le sillon basalaire et le sillon anapleural se croisent, ce qui entraîne le détachement de l'anépisternum en un sclérite distinct, le sclérite poststigmatique; (5) le préépisternum s'agrandit secondairement aux dépens du catépisternum, formant ainsi la suture paracoxale et le catépisternum étroit apposé parallèlement à la bordure postéroventrale de l'épisternum en avant de la mésocoxa; (6) le mésépimère n'est pas divisé en un anépimère et un catépimère par une suture paracoxale, mais chez certains taxons, est divisé de façon secondaire en un mésépimère supérieur et un mésépimère inférieur par des marques qui indiquent la ligne de confluence entre différents groupes de muscles; (7) le trochantin est absent de la structure de base. Les homologies postulées appuient l'hypothèse selon laquelle les Xyelidae représentent la base de la lignée ancestrale des Hyménoptères, mais n'appuient pas l'hypothèse selon laquelle tous les autres Hyménoptères ont eu une origine biphylétique à partir des Xyelidae. Cette étude constitue un exemple de la rétroaction entre la morphologie et la systématique et démontre l'importance de reposer sur la systématique et sur des hypothèses phylogénétiques les tests d'hypothèse sur les homologies élaborées à partir d'études morphologiques comparatives. Des figures schématiques illustrent la théorie subcoxale de l'origine du pleuron et la structure de base hypothétique du mésopleuron d'un Hyménoptère; des tableaux des muscles mésothoraciques étudiés pour établir les homologies des structures pleurosternales entre les Xyelidae et les Raphidiidae sont présentés et des photomicrographies au microscope électronique à balayage illustrent la musculature squelettique. [Traduit par la rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, S.M. 1951. The skeleto-muscular mechanism of Stenobracon deesae Cameron (Braconidae, Hymenoptera) — an ectoparasite of sugarcane and juar borers of India. Part I. Head and Thorax. Aligarh Musl. Univ. Publs (Zool. Ser.) 3: 76 pp. + 9 pls.Google Scholar
Arora, G.L. 1956. The relationships of the Symphyta (Hymenoptera) to other orders of insects on the basis of adult external morphology. Res. Bull. E. Panjab Univ. 90: 85119.Google Scholar
Boudreaux, H.B. 1979. Arthropod Phylogeny With Special Reference to Insects. John Wiley & Sons, Toronto, Ont.320 pp.Google Scholar
Boudreaux, H.B. 1981. About the Panorpoid Complex. Ann. ent. Soc. Am. 74: 155157.Google Scholar
Compere, H. 1962. The reality of sternites in the mesothorax of Hymenoptera. Proc. ent. Soc. Wash. 64: 224228.Google Scholar
Crampton, G.C. 1914 a. The ground plan of a typical thoracic segment in winged insects. Zool. Anz. 44: 5667.Google Scholar
Crampton, G.C. 1914 b. Notes on the thoracic sclerites of winged insects. Ent. News 25: 1525.Google Scholar
Daly, H.V. 1963. Close-packed and fibrillar muscles of the Hymenoptera. Ann. ent. Soc. Am. 56: 295306.Google Scholar
Daly, H.V. 1964. Skeleto-muscular morphogenesis of the thorax and wings of the honey bee Apis mellifera (Hymenoptera: Apidae). Univ. Calif. Publs Ent. 39: 77 pp.Google Scholar
Ferris, G.F. 1940. The myth of the thoracic sternites of insects. Microentomology 5: 8790.Google Scholar
Ferris, G.F., and Pennebaker, P.. 1939. The morphology of Agulla adnixa (Hagen) (Neuroptera: Raphidiidae). Microentomology 4: 121142.Google Scholar
Gibson, G.A.P. 1985. Some pro- and mesothoracic characters important for phylogenetic analysis of Hymenoptera, with a review of terms used for structures. Can. Ent. 117: 13951443.Google Scholar
Gibson, G.A.P. 1986 a. Evidence for monophyly and relationships of Chalcidoidea, Mymaridae, and Mymarommatidae (Hymenoptera: Terebrantes). Can. Ent. 118: 205240.Google Scholar
Gibson, G.A.P. 1986 b. Mesothoracic skeletomusculature and mechanics of flight and jumping in Eupelminae (Hymenoptera, Chalcidoidea: Eupelmidae). Can. Ent. 118: 691728.Google Scholar
Hennig, W. 1981. Insect Phylogeny. English translation by Pont, A.C.. John Wiley & Sons, Toronto, Ont.514 pp.Google Scholar
Heymons, R. 1899. Beitrage zur Morphologie und Entwicklungsgeschichte der Rhynchoten. Nova Acta Acad. Caesar Leop. Carol. 74: 353456 + 3 pls.Google Scholar
Johnson, N.F. 1988. Midcoxal articulations and the phylogeny of the Order Hymenoptera. Ann. ent. Soc. Am. 81: 870881.Google Scholar
Kelsey, L.P. 1957. The skeleto-motor mechanism of the Dobson Fly, Corydalus cornutus. Part II. Pterothorax. Mem. Cornell Univ. agric. Exp. Stn 346: 31 pp. + 55 figs.Google Scholar
Königsmann, E. 1976. Das phylogenetische System der Hymenoptera Teil 1: Einführung, Grundplanmerkmaie, Schwestergruppe und Fossilfunde. Dt. ent. Z. (N.S.) 23: 253279.Google Scholar
Königsmann, E. 1977. Das phylogenetische System der Hymenoptera. Teil 2: Symphyta. Dt. ent. Z. (N.S.) 24: 140.Google Scholar
Kristensen, N.P. 1975. The phylogeny of hexapod “orders”. A critical review of recent accounts. Z. Zool. Syst. Evolut.-forsch. 13: 144.Google Scholar
Kristensen, N.P. 1981. Phylogeny of Insect Orders. A. Rev. Ent. 26: 135157.Google Scholar
Matsuda, R. 1956. The comparative morphology of the thorax of two species of insects. Microentomology 21: 165.Google Scholar
Matsuda, R. 1960 a. Morphology of the pleurosternal region of the pterothorax in insects. Ann. ent. Soc. Am. 53: 712731.Google Scholar
Matsuda, R. 1960 b. A new interpretation of the pleurosternal region of the hymenopterous thorax. Acta Hymen. 1: 109113.Google Scholar
Matsuda, R. 1963. Some evolutionary aspects of the insect thorax. A. Rev. Ent. 8: 5976.Google Scholar
Matsuda, R. 1965. Morphology and evolution of the insect head. Mem. Am. ent. Inst. 4: 334 pp.Google Scholar
Matsuda, R. 1970. Morphology and evolution of the insect thorax. Mem. ent. Soc. Can. 76: 431 pp.Google Scholar
Michener, C.D. 1944. Comparative external morphology, phylogeny, and a classification of the bees (Hymenoptera). Bull. Am. Mas. nat. Hist. 82: 157326.Google Scholar
Naumann, I.D., and Masner, L.. 1985. Parasitic wasps of the proctotrupoid complex: A new family from Australia and a key to world families (Hymenoptera: Proctotrupoidea sensu lato). Aust. J. Zool. 33: 761783.Google Scholar
Rasnitsyn, A.P. 1969. [Origin and evolution of lower Hymenoptera.] Trudy paleont. Inst. 123: 196 pp. [In Russian.]Google Scholar
Rasnitsyn, A.P. 1980. [Origin and evolution of Hymenoptera.] Trudy paleont. Inst. 174: 190 pp. [In Russian.]Google Scholar
Rasnitsyn, A.P. 1988. An outline of evolution of the hymenopterous insects (Order Vespida). Oriental Insects 22: 115145.Google Scholar
Richards, O.W. 1956. An interpretation of the ventral region of the hymenopterous thorax. Proc. R. ent. Soc. Lond. (A) 31: 99104.Google Scholar
Saini, M.S. 1985. Comparative study of the mesoprepectal area in Hymenoptera. J. ent. Res. 9: 132136.Google Scholar
Saini, M.S., and Dhillon, S.S.. 1980. Changing course of the mesopleural suture in the order Hymenoptera. J. anim. Morph. Physiol. 27: 19.Google Scholar
Shcherbakov, D.E. 1980. [Morphology of the pterothoracic pleura in Hymenoptera. 1. Groundplan.] Zool. Zh. 59: 16441653. [In Russian.]Google Scholar
Shcherbakov, D.E. 1981. [Morphology of the pterothoracic pleura in Hymenoptera. 2. Modifications of the groundplan.] Zool. Zh. 60: 205213. [In Russian.]Google Scholar
Shinohara, A. 1986. A new apterous sawfly from Sulawesi, Indonesia (Hymenoptera: Pergidae: Perreyiinae), and the pleural origin of the ventral region of the sawfly mesothorax. Syst. Ent. 11: 247253.Google Scholar
Snodgrass, R.E. 1910. The thorax of the hymenoptera. Proc. U.S. natn. Mus. 39: 3791 + 16 pls.Google Scholar
Snodgrass, R.E. 1927. Morphology and mechanism of the insect thorax. Smithson. misc. Collns 80: 108 pp.Google Scholar
Tonapi, G.T. 1958. The comparative study of spiracular structure and mechanisms of some Hymenoptera. Trans. R. ent. Soc. Lond. 110: 489520 + 12 pls.Google Scholar
Weber, H. 1927. Die Gliederung der Sternalregion des Tenthredinidenthorax. Ein Beitrag zur vergleichenden Morphologie des Insektenthorax. Z. wiss. InsektBiol. 22: 161198 + 6 pls.Google Scholar
Weber, H. 1928. Die Gliederung der Sternopleuralregion des Lepidopterenthorax. Eine vergleichende morphologische Studie zur Subcoaxaltheorie. Z. wiss. Zool. 131: 181254.Google Scholar
Whitfield, J.B., Johnson, N.F., and Hamerski, M.R.. 1989. Identity and phylogenetic significance of the metapostnotum in nonaculeate Hymenoptera. Ann. ent. Soc. Am. 82: 663673.Google Scholar