Skip to main content Accessibility help
×
Home

ENTOMOPOXVIRUSES OF GRASSHOPPERS AND LOCUSTS: BIOLOGY AND BIOLOGICAL CONTROL POTENTIAL

  • D.A. Streett (a1), S.A. Woods (a2) and M.A. Erlandson (a3)

Abstract

Entomopoxviruses (EPVs) are insect poxviruses that are often found infecting grasshoppers and locusts. Nearly 15 grasshopper and locust EPVs have been reported in the literature. This review describes our current knowledge of the biology of grasshopper and locust EPVs including virus ultrastructure, host range, production in cell culture, pathology, process of infection, epizootiology, and field evaluations of the viruses to assess their potential as biological control agents. The most extensively studied has been the Melanoplus sanguinipes EPV (MsEPV). Trypsin-like protease activity has been identified in association with MsEPV occlusion bodies but its importance in the infection process is not known. Mortality from MsEPV has been found to occur in two distinct time frames over 6 weeks or longer. MsEPV is also the only grasshopper EPV that has been grown in vitro and been shown to produce virus that is both infectious and virulent to M. sanguinipes. Horizontal transmission of grasshopper EPVs is apparently by consumption of infected cadavers. Field evaluations of MsEPV at an application rate of 1 × 1010 occlusion bodies per hectare resulted in a 23% prevalence after 13 days despite a considerable amount of dispersal of grasshoppers between plots. Epizootiological studies of EPVs will continue to be an area requiring additional research. Virus production and a limited host range are the two most critical issues affecting the development of EPVs as microbial control agents.

Les entomopoxvirus (EPV) sont des virus des insectes souvent rencontrés chez les criquets. Près de 15 EPV de criquets sont mentionnés dans la littérature. On trouvera ici une révision de l'état de nos connaissances sur la biologie des EPV des criquets, ultrastructure, éventail des hôtes, production en culture, pathologie, processus d'infection, épizootiologie et évaluation en nature, opération destinée à évaluer le potentiel de ces organismes comme agents de lutte biologique. Le virus le plus étudié est l'EPV du Criquet voyageur, Melanoplus sanguinipes (MsEPV). Une protéase de type trypsine a été trouvée en association avec les corps d'inclusion du poxvirus, mais son importance dans le processus infectieux est encore inconnue. La mortalité attribuable au MsEPV se produit selon deux périodes temporelles distinctes au cours d'une durée de 6 semaines ou plus. Le MsEPV est également le seul EPV de criquet a avoir été produit in vitro et le seul à avoir été reconnu capable de produire un virus à la fois infectieux et virulent pour M. sanguinipes. La transmission horizontale des EPV de criquets se fait apparemment par consommation de cadavres infectés. L'évaluation du MsEPV en nature après application de 1 × 1010 corps d'inclusion par hectare a démontré que 23% des criquets étaient infectés après 13 jours, malgré la dispersion importante des criquets d'une parcelle de terrain à une autre. L'étude des épizooties causées par les EPV reste un domaine de recherche très ouvert. La production des virus et la gamme limitée d'hôtes restent deux problèmes critiques dans l'élaboration d'EPV qui pourront servir d'agents de lutte microbienne. [Traduit par la Rédaction]

Copyright

References

Hide All
Erlandson, M.A. 1991. Protease activity associated with occlusion body preparations of an entomopoxvirus from Melanoplus sanguinipes. Journal of Invertebrate Pathology 57: 255263.
Erlandson, M.A. and Streett, D.A.. 1997. Entomopoxviruses associated with grasshoppers and locusts: Biochemical characterization, pp. 131–146 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.
Esposito, J.J. 1991. Poxviridae. pp. 91–102 in Francki, R.I.B., Fraquet, C.M., Knudson, D.L., and Brown, F. (Eds.), Classification and Nomenclature of Viruses. Archives of Virology, Supplementum 2: 450 pp.
Fisher, J.R., Kemp, W.P. and Berry, J.S.. 1995. Melanoplus sanguinipes Phenology North-South Across the Western United States. USDA, APHIS, Technical Bulletin 1809.
Goerzen, D.W., Erlandson, M.A. and Moore, K.C.. 1990. Effect of two insect viruses and two entomopathogenic fungi on larval and pupal development of the alfalfa leafcutting bee, Megachile rotundata (Fab.) (Hymenoptera: Megachilidae). The Canadian Entomologist 120: 10391040.
Goodwin, R.H. and Filshie, B.K.. 1975. Morphology and development of entomopoxviruses from two Australian scarab beetle larvae (Coleoptera: Scarabaeidae). Journal of Invertebrate Pathology 25: 3546.
Goodwin, R.H., Milner, R.J. and Beaton, C.D.. 1991. Entomopoxvirinae. pp. 259–285 in Adams, J.R., and Bonami, J.R. (Eds.), Atlas of Invertebrate Viruses. CRC Press, Boca Raton, FL. 684 pp.
Granados, R.R. 1973. Insect poxviruses: Pathology, morphology, and development, pp. 73–94 in Roberts, D.W., and Yendol, W.G. (Eds.), Some Recent Advances in Insect Pathology. Miscellaneous Publications of the Entomological Society of America. 9: 119 pp.
Granados, R.R. 1981. Entomopoxvirus infections in insects, pp. 101–126 in Davidson, E.W. (Ed.), Pathogenesis of Invertebrate Microbial Diseases. Allanheld, Osmun and Co., Publishers, Inc., Totowa, NJ. 562 pp.
Henry, J.E. 1985. Effect of grasshopper species, cage density, light intensity, and method of inoculation on mass production of Nosema locustae (Microsporida: Nosematidae). Journal of Economic Entomology 78: 12451250.
Henry, J.E. and Jutila, J.W.. 1966. The isolation of a polyhedrosis virus from a grasshopper. Journal of Invertebrate Pathology 8: 417418.
Henry, J.E., Nelson, B.P. and Jutila, J.W.. 1969. Pathology and development of the grasshopper inclusion body virus in Melanoplus sanguinipes. Journal of Virology 3: 605610.
Henry, J.E., Wilson, M.C., Oma, E.A. and Fowler, J.L.. 1985. Pathogenic micro-organisms isolated from West African grasshoppers (Orthoptera: Acrididae). Tropical Pest Management 31: 192195.
Hinks, C.F., Olfert, O.O. and Westcott, N.D.. 1987. Screening cereal cultivars for resistance to early-instar grasshoppers. Journal of Agricultural Entomology 4: 315319.
Jaeger, B. and Langridge, W.H.R.. 1984. Infection of Locusta migratoria with entomopoxviruses from Arphia conspersa and Melanoplus sanguinipes grasshoppers. Journal of Invertebrate Pathology 43: 374382.
Johnson, D.L. and Pavlikova, E.. 1986. Reduction in consumption by grasshoppers (Orthoptera: Acrididae) infected with Nosema locustae Canning (Microsporida: Nosematidae). Journal of Invertebrate Pathology 48: 232238.
Kurtti, T.J., Munderloh, U.G., Ross, S.E., Ahlstrand, G.G. and Streett, D.A.. 1990. Cell culture systems for production of host dependent grasshopper pathogens, pp. 246–251 in Cooperative Grasshopper Integrated Pest Management Project 1990 Annual Report. USDA/APHIS. 282 pp.
Lange, C.E. and Streett, D.A.. 1993. Susceptibility of Argentine melanoplines (Orthoptera: Acrididae) to entomopoxviruses (Entomopoxvirinae) from North American and African grasshoppers. The Canadian Entomologist 125: 11271129.
Langridge, W.H.R., Oma, E.A. and Henry, J.E.. 1983. Characterization of the DNA and structural proteins of entomopoxviruses from Melanoplus sanguinipes, Arphia conspirsa, and Phoetaliotes nebrascensis (Orthoptera). Journal of Invertebrate Pathology 42: 327333.
McAnelly, M.L. and Rankin, M.A.. 1986. Migration in the grasshopper, Melanoplus sanguinipes (Fab). II. Interactions between flight and reproduction. Biological Bulletin (Woods Hole, Massachusetts) 170: 378392.
McGuire, M.R., Streett, D.A. and Shasha, B.S.. 1991. Evaluation of starch-encapsulation for formulation of grasshopper (Orthoptera: Acrididae) entomopoxviruses. Journal of Economic Entomology 84: 16521656.
Miranpuri, G.S., Erlandson, M.A., Gillespie, J.P. and Khachatourians, G.G.. 1992. Changes in hemolymph of the migratory grasshopper, Melanoplus sanguinipes, infected with an entomopoxvirus. Journal of Invertebrate Pathology 60: 274282.
Munderloh, U.G. and Kurtti, T.J.. 1989. Formulation of medium for tick cell culture. Experimental Applied Acarology 7: 219229.
Nakashima, T., Tokuyasu, K. and Funatsu, M.. 1965. Studies on proteolytic enzyme of the cricket, Gryllulus taiwanemma. Agricultural and Biological Chemistry 29: 307314.
Olfert, O.O. and Erlandson, M.A.. 1991. Wheat foliage consumption by grasshoppers (Orthoptera: Acrididae) infected with Melanoplus sanguinipes entomopoxvirus. Environmental Entomology 20: 17201724.
Oma, E.A. and Henry, J.E.. 1986. Host relationships of entomopoxviruses isolated from grasshoppers, pp. 48–49 in Grasshopper Symposium Proceedings. ND Extension Service. 94 pp.
Oma, E.A. and Streett, D.A.. 1993. Production of a grasshopper entomopoxvirus (Entomopoxvirinae) in Melanoplus sanguinipes (F.) (Orthoptera: Acrididae). The Canadian Entomologist 125: 11311133.
O'Neill, K.M., Streett, D. and O'Neill, R.P.. 1994. Scavenging behavior of grasshoppers (Orthoptera: Acrididae): Feeding and thermal responses to newly available resources. Environmental Entomology 23: 12601268.
O'Neill, K.M., Woods, S.A., Streett, D.A. and O'Neill, R.P.. 1993. Aggressive interactions and feeding success of scavenging rangeland grasshoppers (Orthoptera: Acrididae). Environmental Entomology 22: 751758.
O'Reilly, D.R. and Miller, L.K.. 1990. Regulation of expression of a baculovirus ecdysteroid UDP glucosyltransferase gene. Journal of Virology 64: 13211328.
Parker, J.R., Newton, R.C. and Shotwell, R.L.. 1955. Observations on mass flights and other activities of the migratory grasshopper. USDA Technical Bulletin 1109: 46 pp.
Pfadt, R.E. 1982. Density and diversity of grasshoppers (Orthoptera:Acrididae) in an outbreak on Arizona rangeland. Environmental Entomology 11: 690694.
Purrini, K., Kohring, G.W. and Seguni, Z.. 1988. Studies on a new disease in a natural population of migratory locusts, Locusta migratoria, caused by an entomopoxvirus. Journal of Invertebrate Pathology 51: 284286.
Purrini, K. and Rohde, M.. 1988. Light and electron microscope studies on two new diseases in natural populations of the desert locust, Schistocerca gregaria, and the grassland locust, Chortipes sp., caused by two entomopoxviruses. Journal of Invertebrate Pathology 51: 281283.
Sakal, E., Applebaum, S.W. and Birk, Y.. 1989. Purification and characterization of trypsins from the digestive tract of Locusta migratoria. International Journal of Peptide and Protein Research 34: 498505.
Shapiro, M., Stock, R.D. and Ignoffo, C.M.. 1969. Hemocyte changes in larvae of the bollworm, Heliothis zea, infected with a nuclear polyhedrosis virus. Journal of Invertebrate Pathology 14: 2830.
Soderhall, K. and Smith, V.J.. 1986. Prophenoloxidase-activating cascade as a recognition and defense system in arthropods, pp. 251–285 in Gupta, A.P. (Ed.), Hemocytic and Humoral Immunity in Arthropods. John Wiley, New York, NY. 508 pp.
Streett, D.A., Oma, E.A. and Henry, J.E.. 1990. Cross infection of three grasshopper species with the Melanoplus sanguinipes entomopoxvirus. Journal of Invertebrate Pathology 56: 419421.
Streett, D.A. and Woods, S.A.. 1990. Grasshopper pathogen field evaluation: Virus, pp. 210–217 in Cooperative Grasshopper Integrated Pest Management Project 1990 Annual Report. USDA/APHIS. 282 pp.
Vandenberg, J.D., Streett, D.A. and Herbert, E.W. Jr., 1990. Safety of grasshopper entomopoxviruses for caged adult honey bees (Hymenoptera: Apidae). Journal of Economic Entomology 83: 755759.
Wang, L.Y. 1994. Surveys of entomopoxviruses of rangeland grasshoppers in China. Scientia Agricultura Sinica 27: 6063.
Woods, S.A., Streett, D.A. and Henry, J.E.. 1992. Temporal patterns of mortality from an entomopoxvirus and strategies for control of the migratory grasshopper Melanoplus sanguinipes (F.). Journal of Invertebrate Pathology 60: 3339.

ENTOMOPOXVIRUSES OF GRASSHOPPERS AND LOCUSTS: BIOLOGY AND BIOLOGICAL CONTROL POTENTIAL

  • D.A. Streett (a1), S.A. Woods (a2) and M.A. Erlandson (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed