Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-19T11:08:20.356Z Has data issue: false hasContentIssue false

DEVELOPING A NEEM-BASED INSECTICIDE FOR CANADA

Published online by Cambridge University Press:  31 May 2012

M.B. Isman
Affiliation:
Department of Plant Science, University of British Columbia, Vancouver, Canada 6T 2A2
O. Koul
Affiliation:
Department of Plant Science, University of British Columbia, Vancouver, Canada 6T 2A2
J.T. Arnason
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
J. Stewart
Affiliation:
Agriculture Canada Research Station, Charlottetown, Prince Edward Island, Canada C1A 1M8
G.S. Salloum
Affiliation:
Safer Ltd., 6761 Kirkpatrick Cres., R.R. 3, Victoria, British Columbia, Canada V8X 3X1
Get access

Abstract

Leaves of the neem tree, Azadirachta indica A. Juss. (Meliaceae), have been used for centuries in India to protect stored grain from insect attack. Recent concern for the effects of synthetic insecticides on the environment and human health has provided the impetus for a reappraisal of the utility of neem derivatives as botanical crop protectants. Neem and its active principle, the limonoid azadirachtin, have several properties that are highly desirable for a natural insecticide. Azadirachtin is the most potent natural insect antifeedant discovered to date, suppressing insect feeding at concentrations of less than 1 part per million. Azadirachtin is also a potent insect growth regulator, which acts by disrupting molting and development, and interfering with reproduction in adult insects. These actions have been observed in over 90% of the more than 200 species of pest insects tested to date. Neem also has systemic action in some plants which could prove extremely valuable against stem- and root-feeding pests that are difficult to control. Finally, neem is essentially non-toxic to vertebrates, and in fact has a long history of medicinal use in southeast Asia.In the present paper we review our research aimed at developing a neem-based insecticide for use against pests of Canadian agriculture. We document the potent antifeedant action of azadirachtin in laboratory bioassays against the European corn borer, Ostrinia nubilalis Hübner, and the variegated cutworm, Peridroma saucia Hübner, and the molt-disrupting action of the compound in the migratory grasshopper, Melanoplus sanguinipes Fab., and the large milkweed bug, Oncopeltus fasciatus Dallas. Both antifeedant and insect growth regulatory activities of various samples of neem seed oil are shown to be correlated to azadirachtin concentrations in the oils. Field trials of an experimental neem insecticide conducted against pests of crucifers, corn, and potato in British Columbia, Ontario, and Prince Edward Island, respectively, indicate that the neem insecticide provides pest control as effective as or better than pyrethrum, the current botanical insecticide of choice for organic growers. The commercial prospectus for neem insecticides in Canada is discussed in light of our results.

Résumé

Les feuilles du margousier, Azadirachta indica A. Juss. (Meliaceae), ont été utilisées pendant des siècles aux Indes pour protéger les graines entreposés contre les attaques d'insectes. Les préoccupations récentes de l'influence des insecticides synthétiques sur l'environnement et sur la santé humaine ont conduit à la réévaluation de l'utilité des dérivés d'Azadirachta comme protecteurs des récoltes botaniques. Le neem et son principe actif, l'azadirachtine limonoïde, ont plusieurs propriétés très souhaitables en ce qui concerne un insecticide naturel. L'azadirachtine est antiappétant le plus fort découvert à nos jours, supprimant l'alimentation des insectes à des concentrations de moins que 1 part par million. L'azadirachtine est également un important contrôleur de croissance des insectes, agissant comme perturbateur de la mue et du développement, et comme interrupteur de la reproduction des insectes adultes. Plus de 90% des 200 espèces d'insectes ravageurs mises à l'épreuve jusqu'à présent ont démontré ces réactions. Le neem présente une action systémique qui pourrait le rendre extrêmement important contre les insectes ravageurs des tiges et des racines qui sont difficiles à contrôler. Enfin, le neem est principalement non-toxique aux vertébrés, ayant en effet une longue utilisation médicale en Asie du sud-est.

En ce qui concerne le présent article, nous avons passé en revue nos recherches ayant comme but le développement d'un insecticide à base de neem pour utilisation contre les insectes nuisibles à l'agriculture canadienne. Nous avons dressé une liste démontrant l'action importante antiappétante de l'azadirachtine en laboratoire contre la pyrale de maïs, Ostrinia nubilalis Hübner, et contre le vers-gris panaché, Peridroma saucia Hübner; nous avons aussi établi l'action de perturbation de la mue de ce composé pour le petit criquet voyageur, Melanoplus sanguinipes Fab., et la punaise de l'asclépiade, Oncopeltus fasciatus Dallas. Les activités régulatrices d'alimentation et de croissance de plusieurs échantillons d'huile de graines de neem démontrent une corrélation avec les concentrations d'azadirachtine dans l'huile. Les essais aux champs d'un insecticide à base de neem expérimental contre les insectes nuisibles des crucifères, de maïs et de pommes de terre en Colombie britannique, en Ontario et à l'Île-de-Prince-Edouard, respectivement, ont indiqué que l'insecticide contrôle les insectes nuisibles avec une efficacité équivalente ou meilleure que le pyrèthre, l'insecticide botanique de choix pour les producteurs organiques. Les perspectives commerciales des insecticides à base de neem au Canada sont discutées en référence à nos résultats. [Traduit par la rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Author to whom correspondence should be addressed.

References

Abdul Kareem, A., Saxena, R.C., Boncodin, M.E.M., Krishnasamy, V., and Seshu, D.V.. 1989. Neem as seed treatment for rice before sowing: Effects on two homopterous insects and seedling vigor. J. econ. Ent. 82: 12191223.Google Scholar
Anonymous. 1977. Minor oil seeds — A hope for the future. Econ. Scene (India) 6, Special Supplement: 139.Google Scholar
Arnason, J.T., Philogène, B.J.R., Donskov, N., Hudon, M., McDougall, C., Fortier, G., Morand, P., Gardner, D., Lambert, J., Morris, C., and Nozzolillo, C.. 1985. Antifeedant and insecticidal properties of azadirachtin to the European corn borer, Ostrinia nubilalis. Entomologia exp. appl. 38: 2934.Google Scholar
Arnason, J.T., Philogène, B.J.R., Donskov, N., and Kubo, I.. 1987. Limonoids from the Meliaceae and Rutaceae reduce feeding, growth and development of Ostrinia nubilalis. Entomologia exp. appl. 43: 221226.Google Scholar
Arnason, J.T., Philogène, B.J.R., and Morand, P. (Eds.). 1989. Insecticides of Plant Origin. Am. chem. Soc. Symp. Ser. 387. Washington, DC. 213 pp.Google Scholar
Barnby, M.A., Yamasaki, R.B., and Klocke, J.A.. 1989. Biological activity of azadirachtin, three derivatives, and their ultraviolet radiation degradation products against tobacco budworm (Lepidoptera: Noctuidae) larvae. J. econ. Ent. 82: 5863.Google Scholar
Bentley, M.D., Rajab, M.S., Alford, A.R., Mendel, M.J., and Hassanali, A.. 1988. Structure-activity studies of modified citrus limonoids as antifeedants for Colorado potato beetle larvae, Leptinotarsa decemlineata. Entomologia exp. appl. 49: 189193.Google Scholar
Champagne, D.E., Isman, M.B., and G.Towers, H.N.. 1989. Insecticidal activity of phytochemicals and extracts of the Meliaceae. pp. 95109in Arnason, IT., Philogène, B.J.R., and Morand, P. (Eds.), Insecticides of Plant Origin. Am. chem. Soc. Symp. Ser. 387. Washington, DC.Google Scholar
Ermel, K., Pahlich, E., and Schmutterer, H.. 1987. Azadirachtin content of neem kernels from different geographic locations, and its dependence on temperature, relative humidity, and light, pp. 171184in Schmutterer, H., and Ascher, K.R.S. (Eds.), Natural Pesticides From the Neem Tree and Other Tropical Plants. Schriftenreihe der GTZ 206. GTZ, Eschborn.Google Scholar
Isman, M.B., Brard, N.L., Nawrot, J., and Harmatha, J.. 1989. Antifeedant and growth inhibitory effects of bakkenolide-A and other sesquiterpene lactones on the variegated cutworm, Peridroma saucia Hubner (Lep., Noctuidae). J. appl. Ent. 107: 524529.Google Scholar
Isman, M.B., Koul, O., Luczynski, A., and Kaminski, J.. 1990. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J. Agric. Food Chem. 38: 14061411.Google Scholar
Jacobson, M. 1989. Pharmacology and toxicology of neem. pp. 133153in Jacobson, M. (Ed.), Phytochemical Pesticides. Vol. 1. The Neem Tree. CRC Press, Boca Raton, FL.Google Scholar
Jones, P.S., Ley, S.V., Morgan, E.D., and Santafianos, D.. 1989. The chemistry of the neem tree. pp. 1945in Jacobson, M. (Ed.), Phytochemical Pesticides. Vol. 1. The Neem Tree. CRC Press, Boca Raton, FL.Google Scholar
Kinoshita, G.B. 1985. The economics of entomological effort: Viewpoint of the pesticide industry in Canada. Can. Ent. 117: 909921.Google Scholar
Koul, O., Isman, M.B., and Ketkar, CM.. 1990. Properties and uses of neem — Azadirachta indica A. Juss. Can. J. Bot. 68: 111.Google Scholar
Kraus, W., Baumann, S., Bokel, M., Keller, U., Klenk, A., Klingele, M., Pohnl, H., and Schwinger, M.. 1987. Control of insect feeding and development by constituents of Melia azadirach and Azadirachta indica. pp. 111125in Schmutterer, H., and Ascher, K.R.S. (Eds.), Natural Pesticides From the Neem Tree and Other Tropical Plants. Schriftenreihe der GTZ 206. GTZ, Eschborn.Google Scholar
Kraus, W., Bokel, M., Klenk, A., and Pohnl, H.. 1985. The structure of azadirachtin and 22,23-dihydro-23-beta- methoxyazadirachtin. Tetrahedron Lett. 26: 64356438.Google Scholar