Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-04T14:46:38.022Z Has data issue: false hasContentIssue false

AN OVERVIEW OF FACTORS THAT INFLUENCE THE DEVELOPMENT OF CANADIAN PEATLANDS

Published online by Cambridge University Press:  31 May 2012

Dale H. Vitt*
Affiliation:
Department of Botany, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
Get access

Abstract

Canadian peatlands can be classified into ombrotrophic bogs and minerotrophic fens, the latter subdivided into poor, moderate-rich, and extreme-rich fens, each with distinctive indicator species, acidity, alkalinity, and base cation content. If hydrology is considered the most important factor in peatland classification then the primary division must be between ombrotrophic bogs and minerotrophic fens; however both chemical and vegetational differences strongly indicate that the primary division of peatlands should be between acidic, Sphagnum-dominated bogs and poor fens on the one hand, and alkaline, brown-moss-dominated rich fens on the other. Although some metals such as sulphur and aluminum also vary along this gradient, nutrient contents of the surface waters do not. Bogs and fens are oligotrophic to mesotrophic wetlands that should be distinguished from eutrophic, non-peat-forming wetlands such as marshes and swamps by the presence in the former of a well-developed ground layer of bryophytes associated with relatively little seasonal water level fluctuation. Oligotrophy is probably maintained in bogs and poor fens by reduced water flow, whereas rich fens maintain mesotrophy by having larger water through-puts; however this is not well documented. Sphagnum appears to have real ecological significance, both in the initial stages of acidification and in controlling surface water temperature. Seasonal variation in surface water chemistry in all peatland types is relatively small, however precipitation events leading to changes in water levels do affect some chemical components. Although both autogenic and allogenic factors affect peatland development, initiation of peat formation and early development of peatlands during the Early and Mid Holocene were considerably influenced by regional climatic change. Later developmental patterns during the late Holocene and those seen at the present time appear to be more influenced by autogenic factors.

Résumé

Les tourbières canadiennes sont ombrotrophes ou minérotrophes, ces dernières elles-mêmes subdivisées en tourbières pauvres, moyennement riches ou extrêmement riches; chacun de ces milieux possède des espèces indicatrices, une acidité, une alcalinité et un ensemble de cations qui lui sont propres. Si l’hydrologie constitue le principal facteur de classification des tourbières, alors le principal embranchement sépare les tourbières ombrotrophes des tourbières minérotrophes, mais les différences chimiques et végétales indiquent fortement que la classification devrait séparer les tourbières ombrotrophes acides à dominance de Sphagnum et les tourbières minérotrophes pauvres, d’une part, des tourbières minérotrophes alcalines, riches, à dominance de mousses brunes d’autre part. Bien que certains métaux, tels le soufre et l’aluminium, puissent varier aussi le long de ce gradient, le contenu en matière nutritives des eaux de surface ne change pas. Les tourbières ombrotrophes et minérotrophes sont des milieux humides oligotrophes ou mésotrophes qui se distinguent des milieux humides eutrophes où il ne se forme pas de tourbe, comme les marécages, par la présence d’une couche basale bien développée de bryophytes associée à des fluctuations saisonnières relativement faibles du niveau d’eau. L’oligotrophie est probablement associée, dans les toubières ombrotrophes et les tourbières minérotrophes pauvres, à un écoulement d’eau de peu d’importance, alors que les tourbières minérotrophes riches sont probablement mésotrophes à cause d’apports d’eau importants, mais le phénomène est mal connu. Sphagnum semble avoir une importance écologique réelle, aussi bien par son rôle au cours des premières étapes de l’acidification que par sa fonction de régulateur de la température de l’eau de surface. La chimie des eaux de surface varie peu au cours de la saison dans les différents types de milieux tourbeaux, mais les précipitations qui engendrent des variations du niveau de l’eau affectent certaines composantes chimiques. Il faut attribuer tout autant aux facteurs autogènes et aux facteurs allogènes la formation des milieux tourbeux, mais les changements climatiques régionaux ont également influencé grandement la formation de la tourbe et les premières phases de développement des milieux tourbeux au début et au milieu de l’Holocène. Le développement des tourbières à la fin de l’Holocène et ceux que l’on observe maintenant semblent influencés davantage par des facteurs autogènes. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chee, W.-L., and Vitt, D.H.. 1989. The vegetation, surface water chemistry and peat chemistry of moderate-rich fens in central Alberta, Canada. Wetlands 9: 227261.Google Scholar
Clymo, R.S. 1984. The limits of peat bog growth. Philosophical Transactions of the Royal Society of London B 303: 605654.Google Scholar
Clymo, R.S. 1987. Interactions of Sphagnum with water and air. pp. 513529in Hutchinson, T.C., and Meema, K.M. (Eds.), Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems. Springer-Verlag, Berlin.Google Scholar
Crum, H. 1988. A Focus on Peatlands and Peat Mosses. The University of Michigan Press, Ann Arbor, MI. 306 pp.Google Scholar
Damman, A.W.H. 1979. Geographical patterns in peatland development in eastern North America, pp. 4257in Kivinen, E., Heikurainen, L., and Pakarinen, P. (Eds.), Proceedings of the International Symposium on Classification of Peat and Peatlands, Hyytiälä, Finland.Google Scholar
DuRietz, G.E. 1949. Huvidenheter och huvidgranser i Svensk myrvegetation. Summary: Main units and main limits in Swedish mire vegetation. Svensk Botanisk Tidskrift 43: 274309.Google Scholar
Gignac, L.D., and Vitt, D.H.. 1990. Habitat limitations of Sphagnum along climatic, chemical, and physical gradients in mires of western Canada. The Bryologist 93: 722.Google Scholar
Gignac, L.D., Vitt, D.H., Vitt, S.C., Zoltai, S.C., and Bayley, S.E.. 1992. Bryophyte response surfaces along climatic, chemical and physical gradients in peatlands of western Canada. Nova Hedwigia 53: 2771.Google Scholar
Glaser, P.H. 1983. Vegetation patterns in the North Black River peatland, northern Minnesota. Canadian Journal of Botany 61: 20852104.Google Scholar
Glaser, P.H., and Janssens, J.A.. 1986. Raised bogs in eastern North America: Transitions in landforms and gross stratigraphy. Canadian Journal of Botany 64: 395415.Google Scholar
Gorham, E. 1990. 5. Biotic impoverishment in northern peatlands. pp. 6598in Woodwell, G.M. (Ed.), The Earth in Transition Patterns and Processes of Biotic Impoverishment. Cambridge University Press, Cambridge, UK.Google Scholar
Gorham, E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182195.Google Scholar
Gorham, E., Bayley, S.E., and Schindler, D.W.. 1984. Ecological effects of acid deposition upon peatlands a neglected field of “acid rain” research. Canadian Journal of Fisheries and Aquatic Science 41: 12561268.Google Scholar
Gorham, E., Janssens, J.A., Wheeler, G.A., and Glaser, P.H.. 1987. The natural and anthropogenic acidification of peatlands. pp. 493512in Hutchinson, T.C., and Meema, K.M. (Eds.), Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems. Springer-Verlag, Berlin.Google Scholar
Hemond, H.F. 1980. Biogeochemistry of Thoreau's Bog, Concord, Massachusetts. Ecological Monographs 50: 507526.Google Scholar
Horton, D.G., Vitt, D.H., and Slack, N.G.. 1979. Habitats of circumboreal-subarctic Sphagna. I. A quantitative analysis and review of species in the Caribou Mountains, northern Alberta. Canadian Journal of Botany 57: 22832317.Google Scholar
Janssens, J.A., Hansen, B.C.S., Glaser, P.H., and Barnosky, C.W.. 1992. Development of a raised-bog complex in northern Minnesota, pp. 189221in Wright, H.E. Jr.,, Coffin, B., and Aaseng, N. (Eds.), Patterned Peatlands of Northern Minnesota. University of Minnesota Press, Minneapolis, MN.Google Scholar
Kivinen, E., and Pakarinen, P.. 1981. Geographical distribution of peat resources and major peatland complex types in the world. Annales Academiae Scientarum Fennicae Series A 132: 128.Google Scholar
Kubiw, H., Hickman, M., and Vitt, D.H.. 1989. The developmental history of peatlands at Muskiki and Marquerite Lakes, Alberta. Canadian Journal of Botany 67: 35343544.Google Scholar
Kuhry, P., Halsey, L.A., Bayley, S.E., and Vitt, D.H.. 1992. Peatland development in relation to Holocene climatic change in Manitoba and Saskatchewan (Canada). Canadian Journal of Earth Science 29: 10701090.Google Scholar
Kuhry, P., Nicholson, B.J., Gignac, L.D., Vitt, D.H., and Bayley, S.E.. 1993. Development of Sphagnum-dominated peatlands in boreal continental Canada. Canadian Journal of Botany 71: 1022.Google Scholar
LaFarge-England, C., Vitt, D.H., and England, J.. 1991. Holocene soligenous fens on a high arctic fault block, northern Ellesmere Island (82°N), N.W.T., Canada. Arctic and Alpine Research 23: 8098.Google Scholar
Malmer, N. 1986. Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany 64: 375383.Google Scholar
National Wetlands Working Group. 1988. Wetlands of Canada. Ecological Land Classification Series 24. Sustainable Development Branch, Environment Canada, Ottawa, Ont., and Polyscience Publications Inc., Montreal, Que.452 pp.Google Scholar
Nicholson, B.J., and Vitt, D.H.. 1990. The paleoecology of a peatland complex in continental western Canada. Canadian Journal of Botany 68: 121138.Google Scholar
Sjörs, H. 1950. Regional studies in north Swedish mire vegetation. Botaniska Notiser 1950: 174221.Google Scholar
Sjörs, H. 1952. On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2(1950): 242258.Google Scholar
Sjörs, H. 1980. Peat on earth: Multiple use or conservation? Ambio 9: 303308.Google Scholar
Slack, N.G., Vitt, D.H., and Horton, D.G.. 1980. Vegetation gradients of minerotrophically rich fens in western Alberta. Canadian Journal of Botany 58: 330350.Google Scholar
Tuomikoski, R. 1942. Untersuchungen über die Untervegetation der Bruchmoore in Ostfinnland. I. Zur metodik der Pflanzensoziologischen Systematik. Annales Botanici Societatis Zoologicae Botanicae Fennicae ‘Vanamo’ 17: 1203.Google Scholar
Vitt, D.H. 1990. Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Botanical Journal of the Linnean Society 104: 3559.Google Scholar
Vitt, D.H., Bayley, S.E., Jin, T., Halsey, L.A., Parker, B., and Craik, R.. 1990. Methane and Carbon Dioxide Production from Wetlands in Boreal Alberta. Report to Alberta Environment (contract no. 90–0270), Edmonton. 83 pp.Google Scholar
Vitt, D.H., and Chee, W.-L.. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89: 87106.Google Scholar
Vitt, D.H., Crum, H.A., and Snider, J.A.. 1975. The vertical zonation of Sphagnum species in hummock-hollow complexes in northern Michigan. Michigan Botanist 14: 190200.Google Scholar
Vitt, D.H., Horton, D.G., Slack, N.G., and Malmer, N.. 1990. Sphagnum dominated peatlands of the hyperoceanic British Columbia coast: Patterns in surface water chemistry and vegetation. Canadian Journal of Forest Research 20: 696711.Google Scholar
Vitt, D.H., and Kuhry, P.. 1992. Changes in moss-dominated wetland ecosystems, pp. 178210in Bates, J.W., and Farmer, A.M. (Eds.), Bryophytes and Lichens in a Changing Environment. Oxford University Press, Oxford, UK.Google Scholar
Zoltai, S.C. 1971. Southern limit of permafrost features in peat landforms, Manitoba and Saskatchewan. Geological Association of Canada Special Paper 9: 305310.Google Scholar
Zoltai, S.C., and Vitt, D.H.. 1990. Holocene climatic change and the distribution of peatlands in western interior Canada. Quaternary Research 33: 231240.Google Scholar