Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T20:20:10.581Z Has data issue: false hasContentIssue false

Modélisation de la propagation des fissures courtes en fatigue dans le cas du 316L

Published online by Cambridge University Press:  24 December 2010

Get access

Abstract

L’expérience a démontré que la fissure fatale n’est pas nécessairement la plus grande relevée à un moment donné de la fatigue d’un matériau et qu’elle peut être la résultante d’autres microfissures. Ainsi, le dommage (par fatigue) est souvent associé au développement et à la croissance de microfissures en surface. L’avantage de considérer une population de fissures comme facteur physique d’endommagement est que les longueurs de fissures et leur nombre sont des données quantifiables qui peuvent être mesurées en surface du matériau. La présente étude est conduite dans ce sens et vise à caractériser l’endommagement et son évolution par la mesure de la densité de fissures en surface. Un modèle numérique, basé sur des principes aléatoires de génération de fissures, de leur propagation et de leur interaction mutuelle, est proposé. Il est ensuite appliqué dans le cas du 316L à température ambiante et pour des déformations plastiques égales à 8 × 10-3, 4 × 10-3 et 8 × 10-4.

Type
Research Article
Copyright
© AFM, EDP Sciences 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Goto, M., Statistical investigation of the behaviour of small cracks and fatigue life in carbon steels with different ferrite grain sizes, Fatigue Fract. Eng. Mater. Struct. 17 (1994) 635649 CrossRefGoogle Scholar
Kimura, H., Akiniwa, Y., Tanaka, K., Tahara, Y., Ishikawa, T., Fatigue Crack Initiation Behavior in Ultrafine-Grained Steel Observed by AFM and EBSP, JSME Int. J. Ser. A 47 (2004) 331340 CrossRefGoogle Scholar
Elmalki Alaoui, A., Thevenet, D., Zeghloul, A., Experimental investigations on the growth of small fatigue cracks in naval steel, Fatigue Fract. Eng. Mater. Struct. 30 (2007) 489498 CrossRefGoogle Scholar
Hong, Y., Zheng, L., Qiao, Y., Simulation and experiments of stochastic characteristics for collective short fatigue cracks in steels, Fatigue Fract. Eng. Mater. Struct. 25 (2002) 459466 Google Scholar
Qiao, Y., Effects of randomness of grain boundary resistance on fatigue initiation life, Int. J. Fatigue 27 (2005) 12511254 CrossRefGoogle Scholar
Suh, C.M., Lee, J.J. and Kang, G., Fatigue microcraks in type 304 stainless steel at elevated temperature, Fatigue Fract. Eng. Struct. 13 (1990) 487496 CrossRefGoogle Scholar
Obrtlik, K., Polak, J., Hajek, M., Vasek, A., Short fatigue crack behaviour in 316L stainless steel, Int. J. Fatigue 19 (1997) 471475 CrossRefGoogle Scholar
Beretta, S., Clerici, P., Microcrack propagation and microstructural parameters of fatigue damage, Fatigue Fract. Eng. Mater. Struct. 19 (1996) 11071115 CrossRefGoogle Scholar
Rodopoulos, C.A., de los Rios, E.R., Theoretical analysis of the behaviour of short fatigue cracks, Int. J. Fatigue 24 (2002) 719724 CrossRefGoogle Scholar
Yamamoto, M., Kitamura, T., Effect of microstructure on crack propagation in high-temperature fatigue of directionally solidified Ni-based superalloy, Fatigue Fract. Eng. Mater. Struct. 29 (2006) 431439 CrossRefGoogle Scholar
Zhai, T., Jiang, X.P., Li, J.X., Garatt, M.D., Bray, G.H., The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys, Int. J. Fatigue 27 (2005) 12021209 CrossRefGoogle Scholar
Gao, Y., Stolken, J.S., Kumar, M., Ritchie, R.O., High-cycle fatigue of nickel-base superalloy René 104 (ME3): Interaction of microstructurally small cracks with grain boundaries of known character, Acta Materialia 55 (2007) 31553167 CrossRefGoogle Scholar
Murakami, Y., Miller, K.J., What is fatigue damage? A view point from the observation of low cycle fatigue process, Int. J. Fatigue 27 (2005) 9911005 CrossRefGoogle Scholar
Hong, Y., Zheng, L., Qiao, Y., Simulation and experiments of stochastic characteristics for collective short fatigue cracks in steels, Fatigue Fract. Eng. Mater. Struct. 25 (2002) 459466 Google Scholar
Yasniy, P.V., Hlado, V.B., Hutsaylyuk, V.B., Vuherer, T., Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation, Fatigue Fract. Eng. Mater. Struct. 28 (2005) 391397 CrossRefGoogle Scholar
Beloucif, A., Stolarz, J., Low cycle fatigue of zircaloy-4, Proceeding of the sixth international fatigue congress, Berlin Germany, Fatigue96 (1996) 277-282 Google Scholar
Suh, C.M., Lee, J.J., Kang, Y.G., Ahn, H.J., Woo, B.C., A simulation of the fatigue crack process in type 304 stainless steel at 538 °C, Fatigue Fract. Eng. Mater. Struct. 15 (1992) 671684 CrossRefGoogle Scholar
Magnin, T., Ramade, C., Low-cycle fatigue damage mechanisms of f.c.c and b.c.c polycrystals homologous behaviour, Mater. Sci. Eng. A 118 (1989) 4151 CrossRefGoogle Scholar
A. Bataille, T. Magnin, K.J. Miller, Numerical simulation of surface fatigue microcracking processes, Mechanical Engineering Publications, London, 1992, pp. 407–419
V.C. Jesper, Structural evolution and mechanisms of fatigue in polycristalline brass, Thèse de Doctorat, Technical University of Denmark, 1998
Kitagawa, H., Takahashi, S., Suh, C.M., Miyahita, S, Quantitative analysis of fatigue process-microcracks and slip lines under cyclic strains, ASTM-STP 675 (1978) 420439 Google Scholar
A. Bataille, Modélisation numérique de l’endommagement physique en fatigue – cas de l’acier 316L et d’un acier ferrito-perlitique, Thèse de Doctorat, Univ. de Lille, 1992
Magnin, T., Coudreuse, L., Lardon, J.M., A quantitative approach to fatigue damage evolution in FCC and BCC stainless steels, Scripta metallurgica 19 (1985) 14871490 CrossRefGoogle Scholar
Sarfarazi, M., A micromechanical model of microcracking for brittle polycristalline solids, Eng. Fract. Mech. 32 (1989) 120 CrossRefGoogle Scholar
Qiao, Y., Chakravfarthula, S.S., Effects of randomness of grain boundary resistance on fatigue initiation life, Int. J. Fatigue 27 (2005) 12511254 CrossRefGoogle Scholar
Lankford, J., The influence of microstructure on the growth of small fatigue cracks, Fat. Fract. Eng. Mater. Struct. 8 (1985) 161175 CrossRefGoogle Scholar
Tokaji, K., Ogawa, T., Harada, Y., The growth of small fatigue cracks in a low carbon steel; The effect of microstructure and limitations of linear elastic fracture mechanics, Fatigue Fract. Eng. Mater. Struct. 9 (1986) 205217 CrossRefGoogle Scholar
Wang, Y.Z., Atkinson, J.D., Akid, R., Parkins, R.N., Crack interaction, coalescence and mixed mode fracture mechanics, Fatigue Fract. Eng. Mater. Struct. 19 (1996) 427439 CrossRefGoogle Scholar
Ochi, Y., Ishii, A., Sasaki, K., An experimental and statistical investigation of surface fatigue crack initiation and growth, Fatigue Fract. Eng. Mater. Struct. 4 (1985) 327339CrossRefGoogle Scholar