Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-30T15:50:26.580Z Has data issue: false hasContentIssue false

A Combined analytical, experimental and numerical investigation of turbulent air flow behaviour in a rotor-stator cavity

Published online by Cambridge University Press:  05 August 2009

Fadi Abdel Nour
Affiliation:
PRES Université Nord de la France, Arts et Métiers ParisTech, 8, Boulevard Louis XIV, Laboratoire de Mécanique de Lille UMR CNRS 8107, 59046 Lille, France
Sébastien Poncet
Affiliation:
Laboratoire M2P2, UMR 6181 CNRS, Université d'Aix-Marseille, Technopôle Château-Gombert, 38 rue F. Joliot-Curie, 13451 Marseille, France
Roger Debuchy
Affiliation:
PRES Université Nord de la France, IUT de Béthune, 1230 Rue de l'Université, Laboratoire de Mécanique de Lille UMR CNRS 8107, BP 819, 62408 Béthune, France
Gérard Bois
Affiliation:
PRES Université Nord de la France, Arts et Métiers ParisTech, 8, Boulevard Louis XIV, Laboratoire de Mécanique de Lille UMR CNRS 8107, 59046 Lille, France
Get access

Abstract

The present work considers the turbulent air flow inside an annular high speed rotor-stator cavity opened to the atmosphere at the periphery, where the pre-swirl ratio of the fluid is low. The interdisk spacing is sufficiently large so that the boundary layers developed on each disk are separated and the flow belongs to the regime IV of Daily and Nece (ASME J. Basic Eng. 82 (1960) 217–232). In such a system, the solid body rotation of the core predicted by Batchelor (J. Mech. Appl. Math. 4 (1951) 29–41) in case of infinite disks is not always observed: the flow behaviour in the whole interdisk spacing is governed by the level of the pre-swirl velocity of the fluid which is closely linked to the peripheral geometry (Debuchy et al., Int. J. Rotating Machinery, (2007)). In the first part of the paper, experimental results performed by hot-wire probes introduced through the stator including mean radial and tangential velocity components, as well as three turbulent correlations, are presented for several peripheral boundary conditions leading to the same value of the pre-swirl ratio. In the second part, comparisons between experiments, numerical and analytical results are provided. The numerical approach is based on the Reynolds Stress Modeling (RSM) developed by Elena and Schiestel (Int. J. Heat Fluid Flow 17 (1996) 283–289). A good agreement between the different approaches is obtained for the mean and turbulent fields and especially for the distribution of the core swirl ratio.

Type
Research Article
Copyright
© AFM, EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G.K., Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow, J. Mech. Appl. Math. 4 (1951) 2941 CrossRef
Stewartson, K., On the flow between two rotating coaxial discs, Proc. Camb. Phil. Soc. 49 (1953) 333341 CrossRef
Daily, J.W., Nece, R.E., Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks, ASME J. Basic Eng. 82 (1960) 217232 CrossRef
M. Itoh, Y. Yamada, S. Imao, M. Gonda, Experiments on turbulent flow due to an enclosed rotating disk, Proc. Int. Symp. On Engineering Turbulence Modeling and Experiments, in: W. Rodi, E.N. Galic (éd.), Elsevier, New-York, 1990, pp. 659–668
Elena, L., Schiestel, R., Turbulence modelling of rotating confined flows, Int. J. Heat Fluid Flow 17 (1996) 283289 CrossRef
S. Poncet, Ecoulements de type rotor-stator soumis à un flux axial : de Batchelor à Stewartson, Ph.D. thesis, University of Aix-Marseille 1
Poncet, S., Chauve, M.P., Le Gal, P., Turbulent Rotating Disk Flow with Inward Throughflow, J. Fluid Mech. 522 (2005a) 253262 CrossRef
Poncet, S., Chauve, M.P., Schiestel, R., Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow, Phys. Fluids 17 (2005b) 075110 CrossRef
Djaoui, M., Malesys, A., Debuchy, R., Mise en évidence expérimentale de la sensibilité de l'écoulement de type rotor-stator aux effets de bord, C.R. Acad. Sci. Paris Série II b 327 (1998) 4954
Debuchy, R., Della Gatta, S., D'Haudt, E., Bois, G., Martelli, F., Influence of external geometrical modifications on the flow behavior of a rotor-stator system: numerical and experimental investigation, Proceedings of the I MECH E Part A Journal of Power and Energy 221 (2007) 857863 CrossRef
Launder, B.E., Tselepidakis, D.P., Application of a new second-moment closure to turbulent channel flow rotating in orthogonal mode, Int. J. Heat Fluid Flow 15 (1994) 210 CrossRef
J.M. Owen, R.H. Rogers, Flow and heat transfer in rotating-disc system: Rotor-stator system, W.D. Morris (éd.), John Wiley & Sons Inc, Vol. 1, 1989
R. Debuchy, F. Abdel Nour, G. Bois, On the flow behavior in rotor-stator system with superposed flow, International Journal of Rotating Machinery, doi:10.1155/2008/719510 CrossRef