Skip to main content Accessibility help

Smooth bump functions and geomentry of Banach spaces

  • R. Deville (a1), G. Godefroy (a2) and V. Zizler (a3)


Norms with moduli of smoothness of power type are constructed on spaces with the Radon-Nikodym property that admit pointwise Lipschitz bump functions with pointwise moduli of smoothness of power type. It is shown that no norms with pointwise moduli of rotundity of power type can exist on nonsuperreflexive spaces. A new smoothness characterization of spaces isomorphic to Hilbert spaces is given.



Hide All
BF.Bonic, N. and Frampton, J.. Smooth functions on Banach manifolds. J. Math. Mech., 15 (1966), 877898.
Bou.Bourgin, R. D.. Geometric aspects of convex sets with the Radon-Nikodym property. In Lecture Notes in Math., 993 (Springer-Verlag, 1983).
C.Collier, J. B.. The dual of a space with the Radon-Nikodym property. Pacific J. Math., 64 (1976), 103106.
Dl.Day, M. M.. Uniform convexity III. Bull. Amer. Math. Soc., 49 (1943), 745750.
D2.Day, M. M.. Strict convexity and smoothness of normed spaces. Trans. Amer. Math. Soc., 78 (1955), 516528.
Dev 1.Deville, R.. Un theoreme de transfert pour la propriete des boules. Canad. Math. Bull., 30 (1987), 295300.
Dev 2.Deville, R.. Geometrical implications of the existence of very smooth bump functions in Banach spaces. Israel J. Math., 67 (1989), 122.
DF.Deville, R. and Fabian, M.. Principes variationnels el differentiabilité d'applications deftnies sur un espace de Banach (Publ. Math. Besançon, France, 1989).
DGZ.Deville, R., Godefroy, G. and Zizler, V.. Smoothness and Renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics 64 (Pitman, 1993).
Di.Diestel, J.. Geometry of Banach spaces. Selected topics. In Lecture Notes in Math., 485 (Springer-Verlag, 1975).
Ed.Edgar, C. A.. A long James space. In Measure Theory, Proceedings, Lecture Notes in Math., 794 (Springer-Verlag, 1979).
E.Ekeland, I., Nonconvex minimization problems. Bull. Amer. Math. Soc., 1 (1979), 443474.
ELP.Enflo, P., Lindenstrauss, J. and Pisier, G.. On the three space problem. Math. Scand., 36 (1975), 199210.
Fl.Fabian, M.. Lipschitz smooth points of convex functions and isomorphic characterizations of Hilbert spaces. Proc London Math. Soc., 51 (1985), 113126.
F2.Fabian, M.. On projectional resolution of identity on the duals of certain Banach spaces. Bull. Austr. Math. Soc., 35 (1987), 363372.
FPWZ.Fabian, M., Preiss, D., Whitfield, J. H. M. and Zizler, V.. Separating polynomials on Banach spaces. Quart. J. Math. Oxford (2), 40 (1989), 409422.
FWZ.Fabian, M., Whitfield, J. H. M. and Zizler, V.. Norms with locally Lipschitzian derivatives. Israel J. Math., 44 (1983), 262276.
Fi.Finet, C.. Uniform convexity properties of norms on a superreflexive Banach space. Israel J. Math., 53 (1986), 8192.
GGS.Giles, J. R., Gregory, D. A. and Sims, B.. Characterization of normed spaces with Mazur's property. Bull. Austr. Math. Soc., 18 (1978), 105123.
GR.Griewank, A. and Rabier, P. J.. On the smoothness of convex envelopes. Trans. Amer. Math. Soc., 322 (1990), 691709.
H1.Haydon, R.. A counterexample to several questions about scattered compact spaces. Bull. London Math. Soc., 22 (1990), 261268.
H2.Haydon, R.. Trees in renorming theory. Séminaire d'initiation à ànalyse, (1990–91).
H3.Haydon, R.. Infinitely differentiable norms on certain Banach spaces. C.R. Acad. Sci. Paris, Sci. Paris, Ser. I, 315 (1992), 11751178.
Ka.Kadec, M. I.. Conditions on differentiability of the norm of a Banach space. Uspekhi Mat. Nauk., 20 (1965), 183187.
K.Kwapien, S.. Isomorphic characterization of inner product space by orthogonal series with vector valued coefficients. Studia Math., 44 (1972), 583595.
KR.Kunen, K. and Rosenthal, H. P.. Martingale proofs of some geometrical results in Banach space theory. Pacific J. Math., 100 (1982), 153177.
LW.Leach, E. B. and Whitfield, J. H. M.. Differentiable functions and rough norms on Banach spaces. Proc Amer. Math. Soc., 33 (1972), 120126.
LT.Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces, Vol. II. Function Spaces, (Springer-Verlag, 1979).
Me.Meshkov, V. Z.. Smoothness properties in Banach spaces. Studia Math., 63 (1978), 111123.
PWZ.Pechanec, J., Whitfield, J. H. M. and Zizler, V.. Norms locally dependent on finitely many coordinates. An. Acad. Brasil Gene, 53 (1981), 415417.
P1.Phelps, R. R.. Convex functions, monotone operators and differentiability. Springer- Verlag Lecture Notes, 1264 (1989).
P2.Phelps, R. R.. A representation theorem for bounded convex sets. Proc. Amer. Math. Soc., 11 (1960), 976983.
R1.Rainwater, J.. Local uniform convexity of Day's norm on c0(T). Proc Amer. Math. Soc., 22 (1969), 335339.
R2.Rainwater, J.. Day's norm on c0(T). Proc Functional Anal. Week, Various Publ. Series, 8 (Aarhus, 1969) 4650.
S.Stegall, C.. Optimization of functions on certain subsets of Banach spaces. Math. Ann., 236 (1978), 171176.
TJ1.Tomczak-Jaegermann, N.. Banach-Mazur distances and finite-dimensional operator ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38 (Pitman, 1989).
TJ2.Tomczak-Jaegermann, N.. On the differentiability of the norm in the trace class Sp. Seminaire Maurey Schwartz (1974–1975).
Z.Zygmund, A.. Trigonometric Series. Vol. I (Cambridge University Press, 1959).
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification

Related content

Powered by UNSILO

Smooth bump functions and geomentry of Banach spaces

  • R. Deville (a1), G. Godefroy (a2) and V. Zizler (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.