1.Böröczky, K.. Über Dunkelwolken. Proc. Coll. Convexity (ed. Fenchel, W.), Copenhagen Univ. (1967), 13–17.
2.Böröczky, K. and Soltan, V.. Translational and homothetic clouds for a convex body. Studia Sci. Math. Hungar., 32 (1996), 93–102.
3.Csóka, G.. The number of congruent spheres that hide a given sphere of three-dimensional space is not less than 30. Studia Sci. Math. Hungar., 12 (1977), 323–334.
4.Danzer, L.. Drei Beispiele zu Lagerungsproblemen. Arch. Math., 11 (1960), 159–165.
5.Tóth, L. Fejes. Verdeckung einer Kugel durch Kugeln. Publ. Math. Debrecen, 6 (1959), 234–240.
6.Heppes, A.. Ein Satz über gitterförmiger Kugelpackungen. Ann. Univ. Sci. Budapest Eötvös Sect. Math., 3 (1961), 89–90.
7.Heppes, A.. On the number of spheres which can hide a given spheres. Canad. J. Math., 19 (1967), 413–418.
8.Hortobágyi, I.. Durchleuchtung gitterförmiger Kugelpackungen mit Lichtbündeln. Studia Sci. Math. Hungar., 6 (1971), 147–150.
9.Horváth, J.. Über die Durchsichtigkeit gitterförmiger Kugelpackungen. Studia Sci. Math. Hungar., 5 (1970), 421–426.
10.Horvath, J. and Ryškov, S. S.. Estimation of the radius of a cylinder that can be imbedded in any lattice packing of n-dimensional unit balls. Mat. Zamelki, 17 (1975), 123–128.
11.Martini, H. and Soltan, V.. Combinatorial problems on the illumination of convex bodies. Aequationes Math., 57 (1999), 121–152.
12.Rogers, C. A.. Packing and Covering (Cambridge University Press, Cambridge, 1964).
13.Talata, I.. On translational clouds for a convex body. Geom. Dedicata, 80 (2000), 319–329.
14.Zong, C.. A problem of blocking light rays. Geom. Dedicata, 67 (1997), 117–128.
15.Zong, C.. A note on Hornrich's problem. Arch. Math., 72 (1999), 127–131.
16.Zong, C.. Sphere Packings (Springer-Verlag, New York, 1999).