Skip to main content Accessibility help


  • T. D. Browning (a1) and R. Newton (a2)


For any number field we calculate the exact proportion of rational numbers which are everywhere locally a norm but not globally a norm from the number field.



Hide All
1. Bartels, H.-J., Zur Arithmetik von Konjugationsklassen in algebraischen Gruppen. J. Algebra 70 1981, 179199.
2. Bartels, H.-J., Zur Arithmetik von Diedergruppenerweiterungen. Math. Ann. 256 1981, 465473.
3. Bhargava, M., A positive proportion of plane cubics fail the Hasse principle, Preprint, 2014,arXiv:1402.1131.
4. de la Bretèche, R. and Browning, T. D., Contre-exemples au principe de Hasse pour certains tores coflasques. J. Théor. Nombres Bordeaux 26 2014, 2544.
5. Cassels, J. W. S. and Fröhlich, A., Algebraic Number Theory (Proc. Instructional Conf. Brighton, 1965), Academic (1967).
6. Colliot-Thélène, J.-L. and Kunyavskiǐ, B. È., Groupe de Brauer non ramifié des espaces principaux homogènes de groupes linéaires. J. Ramanujan Math. Soc. 13 1998, 3749.
7. Gurak, S., On the Hasse norm principle. J. Reine Angew. Math. 299/300 1978, 1627.
8. Hochschild, G. and Nakayama, T., Cohomology in class field theory. Ann. of Math. (2) 55 1952, 348366.
9. Hürlimann, W., On algebraic tori of norm type. Comment. Math. Helv. 59 1984, 539549.
10. Hürlimann, W., H 3 and rational points on biquadratic bicyclic norm forms. Arch. Math. (Basel) 47 1986, 113116.
11. Loughran, D., The number of varieties in a family which contain a rational point, Preprint, 2014,arXiv:1310.6219.
12. Manin, Y. I., Le groupe de Brauer–Grothendieck en géométrie diophantienne. In Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier-Villars (Paris, 1971), 401411.
13. Neukirch, J., Algebraic Number Theory, Springer (1991).
14. Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of Number Fields (Grundlehren der Mathematischen Wissenschaften 323 ), Springer (2008).
15. Odoni, R. W. K., The Farey density of norm subgroups of global fields. I. Mathematika 20 1973, 155169.
16. Razar, M. J., Central and genus class fields and the Hasse norm theorem. Compos. Math. 35 1977, 281298.
17. Sansuc, J.-J., Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. Reine Angew. Math. 327 1981, 1280.
18. Serre, J.-P., Lectures on N X (p), CRC Press (Boca Raton, FL, 2012).
19. Wei, D., The unramified Brauer group of norm one tori. Adv. Math. 254 2014, 642663.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed