Skip to main content Accessibility help
×
Home

ON A TWISTED VERSION OF LINNIK AND SELBERG’S CONJECTURE ON SUMS OF KLOOSTERMAN SUMS

  • Raphael S. Steiner (a1)

Abstract

We generalize the work of Sarnak and Tsimerman to twisted sums of Kloosterman sums and thus give evidence towards the twisted Linnik–Selberg conjecture.

Copyright

References

Hide All
1. Blomer, V. and Milićević, D., Kloosterman sums in residue classes. J. Eur. Math. Soc. (JEMS) 17(1) 2015, 5169.
2. Blomer, V. and Milićević, D., The second moment of twisted modular L-functions. Geom. Funct. Anal. 25(2) 2015, 453516.
3. Browning, T. D., Vinay Kumaraswamy, V. and Steiner, R. S., Twisted Linnik implies optimal covering exponent for S 3 . Int. Math. Res. Not. IMRN 2017, doi:10.1093/imrn/rnx116.
4. Deligne, P., Formes modulaires et représentations l-adiques. In Séminaire Bourbaki, Vol. 1968/69, Exposés 347–363 (Lecture Notes in Mathematics 179 ), Springer (Berlin, 1971), 139172.
5. Deligne, P., La conjecture de Weil. I. Publ. Math. Inst. Hautes Études Sci. 43 1974, 273307.
6. Deligne, P. and Serre, J.-P., Formes modulaires de poids 1. Ann. Sci. Éc. Norm. Supér. (4) 7 1974, 507530.
7. Deshouillers, J.-M. and Iwaniec, H., Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70(2) 1982–1983, 219288.
8. Dunster, T. M., Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21(4) 1990, 9951018.
9. Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., Higher Transcendental Functions, Vol. II, Robert E. Krieger (Melbourne, FL, 1981); based on notes left by Harry Bateman, reprint of the 1953 original.
10. Ganguly, S. and Sengupta, J., Sums of Kloosterman sums over arithmetic progressions. Int. Math. Res. Not. IMRN 2012(1) 2012, 137165.
11. Hoffstein, J. and Lockhart, P., Coefficients of Maass forms and the Siegel zero. Ann. of Math. (2) 140(1) 1994, 161181; with an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman.
12. Humphries, P., Density theorems for exceptional eigenvalues for congruence subgroups. Algebra Number Theory 12(7) 2018, 15811610.
13. Iwaniec, H., Spectral Methods of Automorphic Forms (Graduate Studies in Mathematics 53 ), 2nd edn., American Mathematical Society/Revista Matemática Iberoamericana, Madrid (Providence, RI, 2002).
14. Iwaniec, H. and Kowalski, E., Analytic Number Theory (American Mathematical Society Colloquium Publications 53 ), American Mathematical Society (Providence, RI, 2004).
15. Jutila, M., Convolutions of Fourier coefficients of cusp forms. Publ. Inst. Math. (Beograd) (N.S.) 65(79) 1999, 3151.
16. Kim, H. H., Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 . J. Amer. Math. Soc. 16(1) 2003, 139183; with Appendix 1 by Dinakar Ramakrishnan and Appendix 2 by Kim and Peter Sarnak.
17. Kiral, E. M. and Young, M. P., The fifth moment of modular $L$ -functions. Preprint, 2017, arXiv:1701.07507.
18. Kuznetsov, N. V., The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums. Mat. Sb. 111(153(3)) 1980, 334383, 479.
19. Michel, P., Analytic number theory and families of automorphic L-functions. In Automorphic Forms and Applications (IAS/Park City Mathematics Series 12 ), American Mathematical Society (Providence, RI, 2007), 181295.
20. Palm, M. R., Explicit $\text{GL}_{}(2)$ trace formulas and uniform, mixed Weyl laws. Preprint, 2012, arXiv:1212.4282.
21. Proskurin, N. V., On the general Kloosterman sums. In Analytical Theory of Numbers and Theory of Functions. Part 19 (Zap. Nauchn. Sem. POMI 302 ), POMI (St. Petersburg, 2003), 107134.
22. Sardari, N. T., Optimal strong approximation for quadratic forms. Duke Math. J. (to appear). Preprint, 2015, arXiv:1510.00462.
23. Sarnak, P. and Tsimerman, J., On Linnik and Selberg’s conjecture about sums of Kloosterman sums. In Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin. Vol. II (Progress in Mathematics 270 ), Birkhäuser (Boston, MA, 2009), 619635.
24. Topacogullari, B., The shifted convolution of divisor functions. Q. J. Math. 67(2) 2016, 331363.
25. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press/Macmillan (Cambridge, UK/New York, 1944).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

ON A TWISTED VERSION OF LINNIK AND SELBERG’S CONJECTURE ON SUMS OF KLOOSTERMAN SUMS

  • Raphael S. Steiner (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed