Skip to main content Accessibility help


  • Gennady Mishuris (a1), Sergei Rogosin (a2) (a3) and Michal Wrobel (a4)


Asymptotic analysis of the Hele-Shaw flow with a small moving obstacle is performed. The method of solution utilizes the uniform asymptotic formulas for Green’s and Neumann functions recently obtained by V. Maz’ya and A. Movchan. The theoretical results of the paper are illustrated by numerical simulations.



Hide All
1.Antontsev, S. N., Gonçalves, C. R. and Meirmanov, A. M., Local existence of classical solutions to the well-posed Hele-Shaw problem. Port. Math. (N.S.) 59(4) 2002, 435452.
2.Antontsev, S. N., Gonçalves, C. R. and Meirmanov, A. M., Exact estimates for the classical solutions to the free-boundary problem in the Hele-Shaw cell. Adv. Differ. Equ. 8(10) 2003, 12591280.
3.Dallaston, M. C. and McCue, S. W., New exact solutions for Hele-Shaw flow in doubly connected regions. Phys. Fluids 24 2012, 052101.
4.Driscoll, T. A., Algorithm 756: A MATLAB toolbox for Schwarz–Christoffel mapping. ACM Trans. Math. Software 22 1996, 168186.
5.Driscoll, T. A., Algorithm 843: Improvements to the Schwarz–Christoffel toolbox for MATLAB. ACM Trans. Math. Software 31 2005, 239251.
6.Entov, V. and Etingof, P., On the break of air bubbles in a Hele-Shaw cell. European J. Appl. Math. 22(2) 2011, 125149.
7.Escher, J. and Simonett, G., Classical solutions of multidimensional Hele-Shaw models. SIAM J. Math. Anal. 28(5) 1997, 10281047.
8.Galin, L. A., Unsteady filtration with a free surface. Dokl. Akad. Nauk USSR 47 1945, 246249 (in Russian).
9.Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, 2nd edn., Springer (Berlin, 2001).
10.Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th edn., Elsevier (Amsterdam, 2007).
11.Gustafsson, B., On a differential equation arising in a Hele-Shaw flow moving boundary problem. Ark. Mat. 22 1984, 251268.
12.Gustafsson, B. and Vasil’ev, A., Conformal and Potential Analysis in Hele-Shaw Cells, Birkhäuser Verlag (Basel, 2006).
13.Hadamard, J., Sur le problème d’analyse relatif à l’equilibre des plaques élastiques encastrées. In Memoire Couronne en 1907 par l’Academie: Prix Vaillant, Mémoires Présentés par Divers Savants à lÁcademie des Sciences, Vol. 33, No. 4, 1908 (Oeuvres de Jasques Hadamard 2), Centre National de la Recherche Scientifique (Paris, 1968), 515629.
14.Hele-Shaw, H. S., The flow of water. Nature 58(1489) 1898, 3336.
15.Hohlov, Yu. E. and Reissig, M., On classical solvability for the Hele-Shaw moving boundary problem with kinetic undercooling regularization. European J. Appl. Math. 6 1995, 421439.
16.Maz’ya, V. and Movchan, A., Uniform asymptotics of Green’s kernels for mixed and Neumann problems in domains with small holes and inclusions. In Sobolev Spaces in Mathematics. III: Applications in Mathematical Physics (International Mathematical Series 10) (ed. Isakov, V.), Springer and Tamara Rozhkovskaya Publisher, Novosibirsk (New York, 2009), 277316.
17.Maz’ya, V. and Movchan, A., Uniform asymptotics of Green’s kernels in perforated domains and meso-scale approximation. Complex Var. Elliptic Equ. 57(2) 2012, 137154.
18.Maz’ya, V., Movchan, A. and Nieves, M., Green’s Kernel and Meso-Scale Approximations in Perforated Domains (Lecture Notes in Mathematics 2077), Springer (Heidelberg, 2013).
19.Mishuris, G., Rogosin, S. and Wrobel, M., Hele-Shaw flow with a small obstacle. Meccanica 49(9) 2014, 20372047, doi:10.1007/S11012-014-9919-8.
20.Mishuris, G., Rogosin, S. and Wrobel, M., Moving stone in the Hele-Shaw flow. Preprint, 2014,arXiv:1404.3547v2 [physics.flu-dyn].
21.Papamichael, N., Lectures on Numerical Conformal Mapping, University of Cyprus, 2008.
22.Polubarinova-Kochina, P. Ya., On the motion of the oil contour. Dokl. Akad. Nauk SSSR 47 1945, 254257 (in Russian).
23.Reissig, M., The existence and uniqueness of analytic solutions for moving boundary value problem for Hele-Shaw flows in the plane. Nonlinear Anal. 23(5) 1994, 565576.
24.Vasil’ev, A., From the Hele-Shaw experiment to integrable systems: a historical overview. Complex Anal. Oper. Theory 3 2009, 551585.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed