Skip to main content Accessibility help
×
Home

Liouville properties on graphs

  • Marco Rigoli (a1), Maura Salvatori (a1) and Marco Vignati (a1)

Abstract

We introduce a class of “differential operators” on graphs and we prove an energy estimate and a Liouville type theorem depending on some structural properties of the operators considered.

Copyright

References

Hide All
DK.Dodziuk, J. and Karp, L.. Spectral and function theory for combinatorial Laplacians. Contemporary Mathematics, 73 (1988), 2540.
H.Hwang, J. F.. Comparison principles and Liouville theorems for prescribed mean curvature equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa, 15 (1988), 341355.
N.-WNash-Williams, C. St. J. A.. Random walks and electric currents in networks. Proc. Cambridge Phil. Soc., 55 (1959), 181194.
RSV.Rigoli, M., Salvatori, M. and Vignati, M.. Subharmonic functions on graphs. Israel J. Math. To appear.
S.Soardi, P. M.. Potential Theory in Infinite Networks, Lecture Notes in Math., 1590 (Springer Verlag, 1994).
W.Woess, W.. Random walks on infinite graphs and groups—a survey on selected topics. Bull. London Math. Soc., 26 (1994), 160.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Liouville properties on graphs

  • Marco Rigoli (a1), Maura Salvatori (a1) and Marco Vignati (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed