Skip to main content Accessibility help
×
Home

THE DISTRIBUTION OF 2-SELMER RANKS OF QUADRATIC TWISTS OF ELLIPTIC CURVES WITH PARTIAL TWO-TORSION

  • Zev Klagsbrun (a1) and Robert J. Lemke Oliver (a2)

Abstract

This paper presents a new result concerning the distribution of 2-Selmer ranks in the quadratic twist family of an elliptic curve over an arbitrary number field $K$ with a single point of order two that does not have a cyclic 4-isogeny defined over its two-division field. We prove that at least half of all the quadratic twists of such an elliptic curve have arbitrarily large 2-Selmer rank, showing that the distribution of 2-Selmer ranks in the quadratic twist family of such an elliptic curve differs from the distribution of 2-Selmer ranks in the quadratic twist family of an elliptic curve having either no rational two-torsion or full rational two-torsion.

Copyright

References

Hide All
1.Cassels, J. W. S., Arithmetic on curves of genus 1. VIII: On the conjectures of Birch and Swinnerton-Dyer. J. reine angew. Math. 217 1965, 180199.
2.Flynn, E. V. and Grattoni, C., Descent via isogeny on elliptic curves with large rational torsion subgroups. J. Symbolic Comput. 43(4) 2008, 293303.
3.Granville, A. and Soundararajan, K., Sieving and the Erdős–Kac theorem. In Equidistribution in Number Theory, an Introduction (NATO Sci. Ser. II Math. Phys. Chem. 237), Springer (Dordrecht, 2007), 15–27; MR 2290492.
4.Heath-Brown, D. R., The size of Selmer groups for the congruent number problem, II. Invent. Math. 118(1) 1994, 331370.
5.Kane, D., On the ranks of the 2-Selmer groups of twists of a given elliptic curve. Algebra Number Theory 7(5) 2013, 12531279.
6.Klagsbrun, Z., Selmer ranks of quadratic twists of elliptic curves with partial rational two-torsion. Preprint, 2011, arXiv:1201.5408.
7.Klagsbrun, Z., Mazur, B. and Rubin, K., A Markov model for Selmer ranks in families of twists. Compos. Math. 150(7) 2014, 10771106.
8.Klagsbrun, Z. and Lemke Oliver, R., The distribution of the Tamagawa ratio in the family of elliptic curves with a two-torsion point. Res. Math. Sci. 1 2014, paper 15, doi:10.1186/s40687-014-0015-4.
9.Klagsbrun, Z. and Lemke Oliver, R., Elliptic curves and the joint distribution of additive functions (in preparation).
10.Swinnerton-Dyer, P., The effect of twisting on the 2-Selmer group. In Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 145, Cambridge University Press (2008), 513526.
11.Xiong, M., On Selmer groups of quadratic twists of elliptic curves with a two-torsion over ℚ. Mathematika 59(2) 2013, 303319.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed