We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a monoidal category $\mathcal C$ with an object J, we construct a monoidal category $\mathcal C[{J^ \vee }]$ by freely adjoining a right dual ${J^ \vee }$ to J. We show that the canonical strong monoidal functor $\Omega :\mathcal C \to \mathcal C[{J^ \vee }]$ provides the unit for a biadjunction with the forgetful 2-functor from the 2-category of monoidal categories with a distinguished dual pair to the 2-category of monoidal categories with a distinguished object. We show that $\Omega :\mathcal C \to \mathcal C[{J^ \vee }]$ is fully faithful and provide coend formulas for homs of the form $\mathcal C[{J^ \vee }](U,\,\Omega A)$ and $\mathcal C[{J^ \vee }](\Omega A,U)$ for $A \in \mathcal C$ and $U \in \mathcal C[{J^ \vee }]$. If ${\rm{N}}$ denotes the free strict monoidal category on a single generating object 1, then ${\rm{N[}}{{\rm{1}}^ \vee }{\rm{]}}$ is the free monoidal category Dpr containing a dual pair – ˧ + of objects. As we have the monoidal pseudopushout $\mathcal C[{J^ \vee }] \simeq {\rm{Dpr}}{{\rm{ + }}_{\rm{N}}}\mathcal C$, it is of interest to have an explicit model of Dpr: we provide both geometric and combinatorial models. We show that the (algebraist’s) simplicial category Δ is a monoidal full subcategory of Dpr and explain the relationship with the free 2-category Adj containing an adjunction. We describe a generalization of Dpr which includes, for example, a combinatorial model Dseq for the free monoidal category containing a duality sequence X0 ˧ X1 ˧ X2 ˧ … of objects. Actually, Dpr is a monoidal full subcategory of Dseq.
Doctrines are categorical structures very apt to study logics of different nature within a unified environment: the 2-category Dtn of doctrines. Modal interior operators are characterised as particular adjoints in the 2-category Dtn. We show that they can be constructed from comonads in Dtn as well as from adjunctions in it, and we compare the two constructions. Finally we show the amount of information lost in the passage from a comonad, or from an adjunction, to the modal interior operator. The basis for the present work is provided by some seminal work of John Power.
Finitary monads on Pos are characterized as precisely the free-algebra monads of varieties of algebras. These are classes of ordered algebras specified by inequations in context. Analogously, finitary enriched monads on Pos are characterized: here we work with varieties of coherent algebras which means that their operations are monotone.
We prove a strictification theorem for cartesian closed bicategories. First, we adapt Power’s proof of coherence for bicategories with finite bilimits to show that every bicategory with bicategorical cartesian closed structure is biequivalent to a 2-category with 2-categorical cartesian closed structure. Then we show how to extend this result to a Mac Lane-style “all pasting diagrams commute” coherence theorem: precisely, we show that in the free cartesian closed bicategory on a graph, there is at most one 2-cell between any parallel pair of 1-cells. The argument we employ is reminiscent of that used by Čubrić, Dybjer, and Scott to show normalisation for the simply-typed lambda calculus (Čubrić et al., 1998). The main results first appeared in a conference paper (Fiore and Saville, 2020) but for reasons of space many details are omitted there; here we provide the full development.