Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T15:11:17.226Z Has data issue: false hasContentIssue false

Sets in homotopy type theory

Published online by Cambridge University Press:  30 January 2015

EGBERT RIJKE
Affiliation:
Emails: e.m.rijke@gmail.com, b.a.w.spitters@gmail.com
BAS SPITTERS
Affiliation:
Emails: e.m.rijke@gmail.com, b.a.w.spitters@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Homotopy type theory may be seen as an internal language for the ∞-category of weak ∞-groupoids. Moreover, weak ∞-groupoids model the univalence axiom. Voevodsky proposes this (language for) weak ∞-groupoids as a new foundation for Mathematics called the univalent foundations. It includes the sets as weak ∞-groupoids with contractible connected components, and thereby it includes (much of) the traditional set theoretical foundations as a special case. We thus wonder whether those ‘discrete’ groupoids do in fact form a (predicative) topos. More generally, homotopy type theory is conjectured to be the internal language of ‘elementary’ of ∞-toposes. We prove that sets in homotopy type theory form a ΠW-pretopos. This is similar to the fact that the 0-truncation of an ∞-topos is a topos. We show that both a subobject classifier and a 0-object classifier are available for the type theoretical universe of sets. However, both of these are large and moreover the 0-object classifier for sets is a function between 1-types (i.e. groupoids) rather than between sets. Assuming an impredicative propositional resizing rule we may render the subobject classifier small and then we actually obtain a topos of sets.

Type
Paper
Copyright
Copyright © Cambridge University Press 2015 

Footnotes

The research leading to these results has received funding from the European Union's 7th Framework Programme under grant agreement nr. 243847 (ForMath).

References

Aczel, P. and Gambino, N. (2002) Collection principles in dependent type theory. In: Types for Proofs and Programs, Springer 123. doi:10.1007/3-540-45842-5_1.Google Scholar
Aczel, P. and Rathjen, M. (2001) Notes on constructive set theory.Google Scholar
Ahrens, B., Kapulkin, K. and Shulman, M. (2013) Univalent categories and the Rezk completion. MSCS. arXiv:1303.0584.Google Scholar
Altenkirch, T. (1999) Extensional equality in intensional type theory. In: 14th Symposium on Logic in Computer Science 412–420. doi:10.1109/LICS.1999.782636.Google Scholar
Avigad, J., Kapulkin, K. and Lumsdaine, P. (2013) Homotopy limits in Coq. arXiv:1304.0680.Google Scholar
Awodey, S. (2012) Type theory and homotopy. Epistemology versus Ontology 27 183201.CrossRefGoogle Scholar
Awodey, S. and Bauer, A. (2004) Propositions as [types]. Journal of Logic and Computation 14 (4) 447471.Google Scholar
Awodey, S., Gambino, N. and Sojakova, K. (2012) Inductive types in homotopy type theory. In: Logic in Computer Science, IEEE 95–104.CrossRefGoogle Scholar
Barras, B. (2013) Native implementation of higher inductive types (HITs) in Coq. Technical report. Available at: http://www.crm.cat/en/Activities/Documents/barras-crm-2013.pdf.Google Scholar
Barras, B., Coquand, T. and Huber, S. (2013) A generalization of Takeuti-Gandy interpretation. Available at: http://uf-ias-2012.wikispaces.com/file/view/semi.pdf.Google Scholar
Bezem, M., Coquand, T. and Huber, S. (2014) A model of type theory in cubical sets. 19th International Conference on Types for Proofs and Programs (TYPES 2013), LIPIcs, volume 26, 107128. doi:10.4230/LIPIcs.TYPES.2013.107.Google Scholar
Bishop, E. (1967) Foundations of Constructive Analysis, McGraw-Hill.Google Scholar
Coq Development Team. (2012) The Coq Proof Assistant Reference Manual, INRIA-Rocquencourt.Google Scholar
Danielsson, N. A. (2013) Closure properties for h-levels. Technical report, Available at: http://www.cse.chalmers.se/~nad/listings/equality/H-level.Closure.html.Google Scholar
Hancock, P., McBride, C., Ghani, N., Malatesta, L. and Altenkirch, T. (2013) Small induction recursion. In: Hasegawa, M. (ed.) Typed Lambda Calculi and Applications, Lecture Notes in Computer Science volume 7941, Springer 156172. doi:10.1007/978-3-642-38946-7_13.Google Scholar
Hofmann, M. (1995) Extensional Concepts in Intensional Type Theory, Ph.D. thesis, University of Edinburgh.Google Scholar
Hofmann, M. and Streicher, T. (1998) The groupoid interpretation of type theory. In: Twenty-Five Years of Constructive Type Theory (Venice, 1995) 36 83111.Google Scholar
Jacobs, B. (1999) Categorical Logic and Type Theory, volume 141, Elsevier.Google Scholar
Johnstone, P. (2002) Sketches of an Elephant: A Topos Theory Compendium, Oxford.Google Scholar
Joyal, A. and Moerdijk, I. (1995) Algebraic Set Theory, London Mathematical Society Lecture Note Series volume 220, Cambridge. doi:10.1017/CBO9780511752483.Google Scholar
Kapulkin, K., Lumsdaine, P. and Voevodsky, V. (2012) The simplicial model of univalent foundations. arXiv:1211.2851.Google Scholar
Lambek, J. and Scott, P. (1988) Introduction to Higher-Order Categorical Logic, volume 7, Cambridge University Press.Google Scholar
Lawvere, F. and Rosebrugh, R. (2003) Sets for Mathematics, Cambridge. doi:10.1017/CBO9780511755460.CrossRefGoogle Scholar
Lumsdaine, P. and Shulman, M. (2015) Higher inductive types. In preparation.Google Scholar
Lurie, J. (2009) Higher Topos Theory, volume 170, Princeton.Google Scholar
Mac, Lane, S. and Moerdijk, I. Topos theory. In: Handbook of Algebra, volume 1, Elsevier 501528. doi:10.1016/S1570-7954(96)80018-0.Google Scholar
Maietti, M. and Sambin, G. (2005) Toward a minimalist foundation for constructive mathematics. From Sets and Types to Topology and Analysis: Practicable Foundations for Constructive Mathematics 48 91114.Google Scholar
Maietti, M. E. (2005) Modular correspondence between dependent type theories and categories including pretopoi and topoi. Mathematical Structures in Computer Science 15 10891149,. Available at: http://journals.cambridge.org/article_S0960129505004962, doi:10.1017/S0960129505004962.Google Scholar
Maietti, M. E. and Rosolini, G. (2012) Elementary quotient completion. ArXiv:1206.0162.Google Scholar
Mines, R., Richman, F. and Ruitenburg, W. (1988) A Course in Constructive Algebra, Springer. doi:10.1007/978-1-4419-8640-5.Google Scholar
Moerdijk, I. and Palmgren, E. (2002) Type theories, toposes and constructive set theory: Predicative aspects of AST. Annals of Pure and Applied Logic 114 (1-3) 155201. doi:10.1016/S0168-0072(01)00079-3.Google Scholar
Norell, U. (2007) Towards a Practical Programming Language Based on Dependent Type Theory, Chalmers University of Technology. Ph.D. thesis, Chalmers University of Technology.Google Scholar
Palmgren, E. (2012) Constructivist and structuralist foundations: Bishops and Lawveres theories of sets. Annals of Pure and Applied Logic. doi:10.1016/j.apal.2012.01.011.Google Scholar
Pelayo, Á., Voevodsky, V. and Warren, M. (2013) A preliminary univalent formalization of the p-adic numbers. arXiv:1302.1207.Google Scholar
Pelayo, Á. and Warren, M. (2012) Homotopy type theory and Voevodsky's univalent foundations. arXiv:1210.5658.Google Scholar
Rezk, C. (2010) Toposes and homotopy toposes (version 0.15). Available at: http://www.math.uiuc.edu/~rezk/homotopy-topos-sketch.pdf.Google Scholar
Rijke, E. and Spitters, B. (2013a) Limits and colimits in homotopy type theory. In preparation.Google Scholar
Rijke, E. and Spitters, B. (2013b) Orthogonal factorization systems in homotopy type theory. Technical report. Available at: http://uf-ias-2012.wikispaces.com/file/view/images.pdf/401765624/images.pdf.Google Scholar
Shulman, M. (2013) The univalence axiom for inverse diagrams and homotopy canonicity. MSCS. arXiv:1203.3253.Google Scholar
Spiwack, A. (2011) A Journey Exploring the Power and Limits of Dependent Type Theory, Ph.D. thesis, École Polytechnique, Palaiseau, France.Google Scholar
Streicher, T. (1992) Independence of the induction principle and the axiom of choice in the pure calculus of constructions. Theoretical Computer Science 103 (2) 395408. doi:10.1016/0304-3975(92)90021-7.Google Scholar
Streicher, T. (2014) A model of type theory in simplicial sets. Journal of Applied Logic 12 (1) 4549. doi:10.1016/j.jal.2013.04.001.Google Scholar
The Univalent Foundations Program. (2013) Homotopy Type Theory: Univalent Foundations of Mathematics, Institute for Advanced Study. arXiv:1308.0729.Google Scholar
Van, Den Berg, B. (2009) Three extensional models of type theory. Mathematical Structures in Computer Science 19 (2) 417434. doi:10.1017/S0960129509007440.Google Scholar
van den Berg, B. (2012) Predicative toposes. arXiv:1207.0959.Google Scholar
Voevodsky, V. (2012) A universe polymorphic type system. Available at: http://uf-ias-2012.wikispaces.com/file/view/Universe+polymorphic+type+sytem.pdf.Google Scholar
Voevodsky, V. (2014) Experimental library of univalent formalization of mathematics. Technical report. arXiv:1401.0053.Google Scholar
Werner, B. (1997) Sets in types, types in sets. In: Theoretical Aspects of Computer Software, Springer 530546. doi:10.1016/j.jal.2013.04.001.CrossRefGoogle Scholar
Wilander, O. (2010) Setoids and universes. Mathematical Structures in Computer Science 20 (4) 563576. doi:10.1017/S0960129510000071.Google Scholar