Skip to main content Accessibility help

Domains of commutative C*-subalgebras

  • Chris Heunen (a1) and Bert Lindenhovius (a2)


A C*-algebra is determined to a great extent by the partial order of its commutative C*-subalgebras. We study order-theoretic properties of this directed-complete partially ordered (dcpo). Many properties coincide: the dcpo is, equivalently, algebraic, continuous, meet-continuous, atomistic, quasi-algebraic or quasi-continuous, if and only if the C*-algebra is scattered. For C*-algebras with enough projections, these properties are equivalent to finite-dimensionality. Approximately finite-dimensional elements of the dcpo correspond to Boolean subalgebras of the projections of the C*-algebra. Scattered C*-algebras are finitedimensional if and only if their dcpo is Lawson-scattered. General C*-algebras are finite-dimensional if and only if their dcpo is order-scattered.


Corresponding author

*Corresponding author. Email:


Hide All
Abramsky, S. and Jung, A. (1994). Domain theory. In: Handbook of Logic in Computer Science, vol. 3, Clarendon Press.
Beltrametti, E. and Cassinelli, G. (1981). The Logic of QuantumMechanics, Encyclopedia of Mathematics and Its Applications, Addison-Wesley Publishing Company.
Berberian, S. K. (1972). Baer *-Rings, Springer, second printing 2011.
Bice, T. and Koszmider, P. (2017). C*-algebras with and without ≪-increasing approximate units. arXiv:1707.09287.
Bratteli, O. (1972). Inductive limits of finite dimensional C*-algebras. Transactions of the AmericanMathematical Society 171 195235.
Bratteli, O. (1974). Structure spaces of approximately finite-dimensional C*-algebras. Journal of Functional Analysis 16 192204.
Connes, A. (1975). A factor not anti-isomorphic to itself. Annals of Mathematics, Second Series 101 (3) 536554.
Conway, J. B. (1990). Functional Analysis, 2nd ed., Springer.
Dauns, J. (1972). Categorical W*-tensor product. Transactions of the American Mathematical Society 166 439456.
Döring, A. and Barbosa, R. S. (2012). Unsharp values, domains and topoi. In: Quantum Field Theory and Gravity, Springer, 6596.
Döring, A. and Harding, J. (2016). Abelian subalgebras and the Jordan structure of von Neumann algebras. Houston Journal of Mathematics 42 (2) 559568.
Dvurečenskij, A. and Pulmannová, S. (2000). New Trends in Quantum Structures, Kluwer Academic Publishers.
Ellis, D. B. and Ellis, R. (2013). Automorphisms and Equivalence Relations in Topological Dynamics, London Mathematical Society Lecture Notes, vol. 412, Cambridge University Press.
Fabian, M., Habala, P., Hjék, P., Santalucía, V. M., Pelant, J. and Zizler, V. (2001). Functional Analysis and Infinite-Dimensional Geometry, Springer.
Farah, I. and Katsura, T. (2010). Nonseparable UHF algebra I: Dixmier’s problem. Advances in Mathematics 225 (3) 13991430.
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J .D., Mislove, M. W. and Scott, D. S. (2003). Continuous Lattices andDomains, Cambridge University Press.
Grätzer, G., Koh, K. M. andMakkai, M. (1972). On the lattice of subalgebras of a Boolean algebra. Proceedings of the American Mathematical Society 36 8792.
Hamhalter, J. (2011). Isomorphisms of ordered structures of abelian C*-subalgebras of C*-algebras. Journal of Mathematical Analysis and Applications 383 391399.
Hamhalter, J. (2015). Dye’s theorem and Gleason’s theorem for AW*-algebras. Journal of Mathematical Analysis and Applications 422 (2) 11031115.
Harding, J., Heunen, C., Lindenhovius, B. and Navara, M. (2017). Boolean subalgebras of orthoalgebras. arXiv:1711.03748.
Heunen, C. (2014a). The many classical faces of quantum structures. arXiv:1412.2117.
Heunen, C. (2014b). Piecewise Boolean algebras and their domains. In: ICALP, Lectures Notes in Computer Science, vol. 8573, Springer, 208219.
Heunen, C. and Lindenhovius, B. (2015). Domains of commutative C*-subalgebras. In: Logic in Computer Science, ACM/IEEE, 450461.
Heunen, C. and Reyes, M. L. (2014). Active lattices determine AW*-algebras. Journal of Mathematical Analysis and Applications 416 289313.
Huruya, T. (1978). A spectral characterization of a class of C*-algebras. Science Reports of Niigata University (Series A) 15 2124.
Jensen, H. E. (1977). Scattered C*-algebras. Mathematica Scandinavica 41 308314.
Kadison, R. and Ringrose, J. (1983). Fundamentals of the Theory of Operator Algebra, Volume I: Elementary Theory, American Mathematical Society.
Kadison, R. and Ringrose, J. (1991). Fundamentals of the Theory of Operator Algebra, Volume III: Elementary Theory – An Exercise Approach, American Mathematical Society.
Kaplansky, I. (1951). Projections in Banach algebras. Annals of Mathematics, Second Series 53 (2) 235249.
Kusuda, M. (2010). A characterization of scattered C*-algebras and its application to C*-crossed products. Journal of Operator Theory 63 (2) 417424.
Kusuda, M. (2012). C*-algebras in which every C*-subalgebra is AF. Quarterly Journal of Mathematics 63 (3) 675680.
Landsman, N. (2017). Foundations of Quantum Theory, Springer.
Lazar, A. (1982). AF algebras with a lattice of projections. Mathematica Scandinavica 50 135144.
Lazar, A. (1983). AF algebras with directed sets of finite-dimensional C*-subalgebras. Transactions of the American Mathematical Society 275 (2) 709721.
Lin, H. (1989). The structure of quasi-multipliers of C*-algebras. Transactions of the American Mathematical Society 315 147172.
Lindenhovius, B. (2015). Classifying finite-dimensional C*-algebras by posets of their commutative C*-subalgebras. International Journal of Theoretical Physics 54 46154635.
Lindenhovius, B. (2016). $\mathcal{C}(A)$. Phd thesis, Radboud University.
Mendivil, F. (1999). Function algebras and the lattices of compactifications. Proceedings of the AmericanMathematical Society 127 18631871.
Navara, M. and Rogalewicz, V. (1991). The pasting construction for orthomodular posets. Mathematische Nachrichten 154 157168.
Negrepontis, J. (1971). Duality in analysis from the point of view of triples. Journal of Algebra 19 (2) 228253.
Saito, K. and Wright, J. D. M. (2015). Monotone Complete C*-algebras and Generic Dynamics, Springer.
Semadeni, Z. (1971). Banach Spaces of Continuous Functions, Volume 1, PWN Polish Scientific Publishers.
Spitters, B. (2012). The space of measurement outcomes as a spectral invariant for non-commutative algebras. Foundations of Physics 42 896908.
Stoltenberg-Hansen, V., Lindström, I. and Griffor, E. (2008). Mathematical Theory of Domains, Cambridge University Press.
Takesaki, M. (2000). Theory of Operator Algebra I, Springer.
Weaver, N. (2001). Mathematical Quantization, Chapman Hall/CRC.
Wegge-Olsen, N. E. (1993). K-theory and C*-algebras, Oxford University Press.
Willard, S. (1970). General Topology, Addison-Wesley.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed