Abramsky, S. and Jung, A. (1994). Domain theory. In: Handbook of Logic in Computer Science, vol. 3, Clarendon Press.

Beltrametti, E. and Cassinelli, G. (1981). The Logic of QuantumMechanics, Encyclopedia of Mathematics and Its Applications, Addison-Wesley Publishing Company.

Berberian, S. K. (1972). Baer *-Rings, Springer, second printing 2011.

Bice, T. and Koszmider, P. (2017). C*-algebras with and without ≪-increasing approximate units. arXiv:1707.09287.

Bratteli, O. (1972). Inductive limits of finite dimensional C*-algebras. Transactions of the AmericanMathematical Society 171 195–235.

Bratteli, O. (1974). Structure spaces of approximately finite-dimensional C*-algebras. Journal of Functional Analysis 16 192–204.

Connes, A. (1975). A factor not anti-isomorphic to itself. Annals of Mathematics, Second Series 101 (3) 536–554.

Conway, J. B. (1990). Functional Analysis, 2nd ed., Springer.

Dauns, J. (1972). Categorical W*-tensor product. Transactions of the American Mathematical Society 166 439–456.

Döring, A. and Barbosa, R. S. (2012). Unsharp values, domains and topoi. In: Quantum Field Theory and Gravity, Springer, 65–96.

Döring, A. and Harding, J. (2016). Abelian subalgebras and the Jordan structure of von Neumann algebras. Houston Journal of Mathematics 42 (2) 559–568.

Dvurečenskij, A. and Pulmannová, S. (2000). New Trends in Quantum Structures, Kluwer Academic Publishers.

Ellis, D. B. and Ellis, R. (2013). Automorphisms and Equivalence Relations in Topological Dynamics, London Mathematical Society Lecture Notes, vol. 412, Cambridge University Press.

Fabian, M., Habala, P., Hjék, P., Santalucía, V. M., Pelant, J. and Zizler, V. (2001). Functional Analysis and Infinite-Dimensional Geometry, Springer.

Farah, I. and Katsura, T. (2010). Nonseparable UHF algebra I: Dixmier’s problem. Advances in Mathematics 225 (3) 1399–1430.

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J .D., Mislove, M. W. and Scott, D. S. (2003). Continuous Lattices andDomains, Cambridge University Press.

Grätzer, G., Koh, K. M. andMakkai, M. (1972). On the lattice of subalgebras of a Boolean algebra. Proceedings of the American Mathematical Society 36 87–92.

Hamhalter, J. (2011). Isomorphisms of ordered structures of abelian C*-subalgebras of C*-algebras. Journal of Mathematical Analysis and Applications 383 391–399.

Hamhalter, J. (2015). Dye’s theorem and Gleason’s theorem for AW*-algebras. Journal of Mathematical Analysis and Applications 422 (2) 1103–1115.

Harding, J., Heunen, C., Lindenhovius, B. and Navara, M. (2017). Boolean subalgebras of orthoalgebras. arXiv:1711.03748.

Heunen, C. (2014a). The many classical faces of quantum structures. arXiv:1412.2117.

Heunen, C. (2014b). Piecewise Boolean algebras and their domains. In: ICALP, Lectures Notes in Computer Science, vol. 8573, Springer, 208–219.

Heunen, C. and Lindenhovius, B. (2015). Domains of commutative C*-subalgebras. In: Logic in Computer Science, ACM/IEEE, 450–461.

Heunen, C. and Reyes, M. L. (2014). Active lattices determine AW*-algebras. Journal of Mathematical Analysis and Applications 416 289–313.

Huruya, T. (1978). A spectral characterization of a class of C*-algebras. Science Reports of Niigata University (Series A) 15 21–24.

Jensen, H. E. (1977). Scattered C*-algebras. Mathematica Scandinavica 41 308–314.

Kadison, R. and Ringrose, J. (1983). *Fundamentals of the Theory of Operator Algebra, Volume I: Elementary Theory*, American Mathematical Society.

Kadison, R. and Ringrose, J. (1991). *Fundamentals of the Theory of Operator Algebra, Volume III: Elementary Theory – An Exercise Approach*, American Mathematical Society.

Kaplansky, I. (1951). Projections in Banach algebras. Annals of Mathematics, Second Series 53 (2) 235–249.

Kusuda, M. (2010). A characterization of scattered C*-algebras and its application to C*-crossed products. Journal of Operator Theory 63 (2) 417–424.

Kusuda, M. (2012). C*-algebras in which every C*-subalgebra is AF. Quarterly Journal of Mathematics 63 (3) 675–680.

Landsman, N. (2017). Foundations of Quantum Theory, Springer.

Lazar, A. (1982). AF algebras with a lattice of projections. Mathematica Scandinavica 50 135–144.

Lazar, A. (1983). AF algebras with directed sets of finite-dimensional C*-subalgebras. Transactions of the American Mathematical Society 275 (2) 709–721.

Lin, H. (1989). The structure of quasi-multipliers of C*-algebras. Transactions of the American Mathematical Society 315 147–172.

Lindenhovius, B. (2015). Classifying finite-dimensional C*-algebras by posets of their commutative C*-subalgebras. International Journal of Theoretical Physics 54 4615–4635.

Lindenhovius, B. (2016). $\mathcal{C}(A)$. Phd thesis, Radboud University. Mendivil, F. (1999). Function algebras and the lattices of compactifications. Proceedings of the AmericanMathematical Society 127 1863–1871.

Navara, M. and Rogalewicz, V. (1991). The pasting construction for orthomodular posets. Mathematische Nachrichten 154 157–168.

Negrepontis, J. (1971). Duality in analysis from the point of view of triples. Journal of Algebra 19 (2) 228–253.

Saito, K. and Wright, J. D. M. (2015). Monotone Complete C*-algebras and Generic Dynamics, Springer.

Semadeni, Z. (1971). Banach Spaces of Continuous Functions, Volume 1, PWN Polish Scientific Publishers.

Spitters, B. (2012). The space of measurement outcomes as a spectral invariant for non-commutative algebras. Foundations of Physics 42 896–908.

Stoltenberg-Hansen, V., Lindström, I. and Griffor, E. (2008). Mathematical Theory of Domains, Cambridge University Press.

Takesaki, M. (2000). Theory of Operator Algebra I, Springer.

Weaver, N. (2001). Mathematical Quantization, Chapman Hall/CRC.

Wegge-Olsen, N. E. (1993). K-theory and C*-algebras, Oxford University Press.

Willard, S. (1970). General Topology, Addison-Wesley.