Skip to main content Accessibility help
×
Home

Boolean and classical restriction categories

  • ROBIN COCKETT (a1) and ERNIE MANES (a2)

Abstract

A restriction category is an abstract category of partial maps. A Boolean restriction category is a restriction category that supports classical (Boolean) reasoning. Such categories are models of loop-free dynamic logic that is deterministic in the sense that < α > Q ⊂ [α]Q. Classical restriction categories are restriction categories with a locally Boolean structure: it is shown that they are precisely full subcategories of Boolean restriction categories. In particular, a Boolean restriction category may be characterised as a classical restriction category with finite coproducts in which all restriction idempotents split.

Every restriction category admits a restriction embedding into a Boolean restriction category. Thus, every abstract category of partial maps admits a conservative extension that supports classical reasoning. An explicit construction of the classical completion of a restriction category is given.

Copyright

References

Hide All
Batbedat, A. (1981) γ-demi-groups, demi-modules, produit demi-directs. Springer-Verlag Lecture Notes in Mathematics 855 118.
Birkhoff, G. (1948) Lattice Theory, American Mathematical Society Colloquium Publications, Volume 25.
Cockett, J. R. B. and Lack, S. (2002) Restriction categories I: categories of partial maps. Theoretical Computer Science 270 223259.
Cockett, J. R. B. and Lack, S. (2003) Restriction categories II: partial map classification. Theoretical Computer Science 294 61102.
Cockett, J. R. B. and Lack, S. (2004) Restriction categories III: colimits, partial limits and extensivity. Mathematical Structures in Computer Science 17 (4)9571027.
Cockett, J. R. B. and Guo, X. (2006) Stable meet semilattice fibrations and free restriction categories. Theory and Applications of Categories 16 307341.
Cockett, J. R. B. and Guo, X. (to be submitted) Restrictions, ranges, partial map categories and fibrations.
Dijkstra, E. J. (1976) A Discipline of Programming, Prentice Hall.
Di Paola, R. A., and Heller, A. (1987) Dominical categories: recursion theory without elements. Journal of Symbolic Logic 52 595635.
Elgot, C. C. (1975) Monadic computation and iterative algebraic theories. In: Rose, H. E. and Shepherdson, J. C. (eds.) Proceedings of Logic Colloquium ’73, North-Holland, 175230.
Escardó, M. H. (2001) The regular-locally compact coreflection of a stably locally compact locale. Journal of Pure and Applied Algebra 157 4155.
Fischer, M. J. and Ladner, R. E. (1976) Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18 286294.
Fountain, J. (1977) A class of right PP monoids. Quarterly Journal of Mathematics 28 285300.
Freyd, P. J. (1972) Aspects of Topoi. Bulletin of the Australian Mathematical Society 7 176.
Freyd, P. J. and Scedrov, A. (1990) Categories, Allegories, North-Holland.
Gould, V. (2002) (Weakly) left E-ample semigroups (notes). (Available at http://www-users.york.ac.uk/~varg1/gpubs.htm.)
Grandis, M. (1990) Cohesive Categories and Manifolds. Annali di Mathematica pura ed applicata 157 199244.
Kozen, D. H. A. and Tiuryn, J. (2000) Dynamic Logic, MIT Press.
Harel, D., Meyer, A. R. and Pratt, V. R. (1977) Computability and completeness in logics of programs. Proceedings of the 9th ACM Symposium on the Theory of Computing 261–268.
Jackson, M. and Stokes, T. (2001) An invitation to C-semigroups. Semigroup Forum 62 279310.
Jackson, M. and Stokes, T. (submitted) Partial maps with domain and range: extending Schein's representation.
Johnstone, P. T. (1982) Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press.
Kozen, D. (1980) A representation theorem for models of *-free PDL. In: de Bakker, J. W. and Van Leeuwen, J. (eds.) Automata, Languages and Programming, ICALP ’80. Springer-Verlag Lecture Notes in Computer Science 85 351–362.
Manes, E. G. (1998) Implementing collection classes with monads. Mathematical Structures in Computer Science 8 231276.
Manes, E. G. (2002) Taut monads and T0 spaces. Theoretical Computer Science 275 79109.
Manes, E. G. (1992) Predicate Transformer Semantics, Cambridge University Press.
Manes, E. G. (2006a) Guarded and banded semigroups. Semigroup Forum 72 94120.
Manes, E. G. (2006b) Boolean restriction categories and taut monads. Theoretical Computer Science 360 7795.
Menger, K. (1955) Calculus, a Modern Approach, Ginn, Boston.
Menger, K. (1959) An axiomatic theory of functions and fluents. In: Henkin, L., Suppes, P. and Tarski, A. (eds.) The Axiomatic Method, North-Holland454473.
Moggi, E. (1988) The Partial Lambda-Calculus, Ph.D. thesis, University of Edinburgh. (Available as CST-53-88.)
Mulry, P. S. (1992) Partial map classifiers and partial cartesian closed cartegories. Theoretical Computer Science 99 141155.
Resende, P. (2007) Étale groupoids and their quantales. Advances in Mathematics 208 147209.
Robinson, E. P. and Rosolini, G. (1988) Categories of partial maps. Information and computation 79 94130.
Schein, B. (1970a) Relation algebras and function semigroups. Semigroup Forum 1 162.
Schein, B. (1970b) Restrictive multiplicative algebras of transformations (in Russian). Izv. Vysš. Učebn. Zaved. Matematika 95 (4)91102.
Schweizer, B. and Sklar, A. (1961) The algebra of functions II. Mathematische Annalen 143 440447.
Schweizer, B. and Sklar, A. (1967) Function systems. Mathematische Annalen 172 116.
Segerberg, K. (1977) A completeness theorem in the modal logic of programs. Notices of the American Mathematical Society 24 A-522.

Related content

Powered by UNSILO

Boolean and classical restriction categories

  • ROBIN COCKETT (a1) and ERNIE MANES (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.