Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T04:35:35.608Z Has data issue: false hasContentIssue false

Reducibility of domain representations and Cantor–Weihrauch domain representations

Published online by Cambridge University Press:  01 December 2008

JENS BLANCK*
Affiliation:
Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom

Abstract

We introduce a notion of reducibility of representations of topological spaces and study some basic properties of this notion for domain representations.

A representation reduces to another if its representing map factors through the other representation. Reductions form a pre-order on representations. A spectrum is a class of representations divided by the equivalence relation induced by reductions. We establish some basic properties of spectra, such as, non-triviality. Equivalent representations represent the same set of functions on the represented space.

Within a class of representations, a representation is universal if all representations in the class reduce to it. We show that notions of admissibility, considered both for domains and within Weihrauch's TTE, are universality concepts in the appropriate spectra. Viewing TTE representations as domain representations, the reduction notion here is a natural generalisation of the one from TTE.

To illustrate the framework, we consider some domain representations of real numbers and show that the usual interval domain representation, which is universal among dense representations, does not reduce to various Cantor domain representations. On the other hand, however, we show that a substructure of the interval domain more suitable for efficient computation of operations is equivalent to the usual interval domain with respect to reducibility.

Type
Paper
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, S. and Jung, A. (1994) Domain theory. In: Abramsky, S. et al. (eds.) Handbook of Logic in Computer Science, volume III, Oxford University Press 1168.Google Scholar
Bauer, A. (2002) A relationship between equilogical spaces and type two effectivity. Mathematical Logic Quarterly 48 (supplement 1)115.3.0.CO;2-7>CrossRefGoogle Scholar
Bauer, A., Birkedal, L. and Scott, D. S. (2004) Equilogical spaces. Theoretical Computer Science 315 3559.CrossRefGoogle Scholar
Berger, U. (1996) Density theorems for the domains-with-totality semantics of dependent types. In: Adamek, J., Koslowski, J., Pollara, V. and Struckmann, W. (eds.) Proceedings of the Workshop Domains II, Technische Universität Braunschweig.Google Scholar
Berger, U. (1999) Density theorems for the domains-with-totality semantics of dependent types. Applied Categorical Structures 7 330.CrossRefGoogle Scholar
Birkedal, L., Carboni, A., Rosolini, G. and Scott, D. S. (1998) Type theory via exact categories. In: Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press 188–198.CrossRefGoogle Scholar
Blanck, J. (1995) Domain representability of metric spaces, Licentiate thesis, Uppsala University. U.U.D.M. Report 1995:20.Google Scholar
Blanck, J. (1997a) Computability on topological spaces by effective domain representations, Ph.D. thesis, Uppsala University. Uppsala Dissertations in Mathematics 7.Google Scholar
Blanck, J. (1997b) Domain representability of metric spaces. Annals of Pure and Applied Logic 83 225247.CrossRefGoogle Scholar
Blanck, J. (1999) Effective domain representations of , the space of compact subsets. Theoretical Computer Science 219 1948.CrossRefGoogle Scholar
Blanck, J. (2000) Domain representations of topological spaces. Theoretical Computer Science 247 229255.CrossRefGoogle Scholar
Blanck, J. (2001) Effectivity of regular spaces. In: Blanck, J., Brattka, V. and Hertling, P. (eds.) Computability and Complexity in Analysis. Springer-Verlag Lecture Notes in Computer Science 2064 1–15.CrossRefGoogle Scholar
Blanck, J. (2006) Exact real arithmetic using centred intervals and bounded error terms. Journal of Logic and Algebraic Programming 66 5067.CrossRefGoogle Scholar
Dahlgren, F. (2007a) Effective Distribution Theory, Ph.D. thesis, Uppsala University.Google Scholar
Dahlgren, F. (2007b) Partial continuous functions and admissible domain representations. Journal of Logic and Computation (to appear).CrossRefGoogle Scholar
di Gianantonio, P. (1996) Real number computability and domain theory. Information and Computation 127 1125.CrossRefGoogle Scholar
Edalat, A. (1995a) Domain theory and integration. Theoretical Computer Science 151 163193.CrossRefGoogle Scholar
Edalat, A. (1995b) Dynamical systems, measures, and fractals via domain theory. Information and Computation 120 3248.CrossRefGoogle Scholar
Edalat, A. (1997) Domains for computation in mathematics, physics and exact real arithmetic. Bulletin of Symbolic Logic 3 (4)401452.CrossRefGoogle Scholar
Edalat, A. and Heckmann, R. (1998) A computational model for metric spaces. Theoretical Computer Science 193 5373.CrossRefGoogle Scholar
Edalat, A. and Lieutier, A. (1999) Foundation of a computable solid modelling. In: Proceedings of ACM's Symposium on Solid Modeling '99, ACM.CrossRefGoogle Scholar
Edalat, A. and Lieutier, A. (2002) Domain theory and differential calculus. In: LICS'02.Google Scholar
Ershov, Y. (1973) Theorie der Numerierungen. Zeitschrift für Math. Log. 19 (4)289388.CrossRefGoogle Scholar
Ershov, Y. (1975) Theorie der Numerierungen II. Zeitschrift für Math. Log. 21 (6)473584.Google Scholar
Ershov, Y. (1977a) Theorie der Numerierungen III. Zeitschrift für Math. Log. 23 (4)289371.Google Scholar
Ershov, Y. L. (1977b) Model C of partial continuous functionals. In: Gandy, R.O. and Hyland, J.M.E. (eds.) Logic Colloquium 76. Studies in Logic and Foundations in Mathematics 87 455–467.Google Scholar
Hamrin, G. (2005) Effective Domains and Admissible Domain Representations, Ph.D. thesis, Department of Mathematics, Uppsala University.Google Scholar
Køber, P. (2007) Uniform domain representations of łp-spaces. Mathematical Logic Quarterly 53 (2)180205.CrossRefGoogle Scholar
Lietz, P. (2004) From Constructive Mathematics to Computable Analysis via the Realizability Interpretation, Ph.D. thesis, TU Darmstadt.Google Scholar
Mal'cev, A.I. (1961) Constructive algebras. I. Uspehi Mat. Nauk 16 (3 (99))360.Google Scholar
Menni, M. and Simpson, A. (2002) Topological and limit-space subcategories of countably-based equilogical spaces. Mathematical Structures in Computer Science 12 739770.CrossRefGoogle Scholar
Normann, D. (1996) A hierarchy of domains with totality, but without density. In: Cooper, S.B., Slaman, T.A. and Wainer, S.S. (eds.) Computability, Enumerability, Unsolvability. London Mathematical Society Lecture Notes Series 224 233–257.Google Scholar
Normann, D. (2001) The continuous functionals of finite type over the reals. In: Keimel, K., Liu, Y.M. and Zhang, G.-Q. (eds.) Domains and Processes, Kluwer Academic Publishers 103124.CrossRefGoogle Scholar
Rosolini, G. (2000) Equilogical spaces and filter spaces. Rendiconti del Circolo Matematico di Palermo (Serie II) 64.Google Scholar
Schröder, M. (2002) Extended admissibility. Theoretical Computer Science 284 (2)519538.CrossRefGoogle Scholar
Scott, D.S. (1996) A new category? Domains, spaces and equivalence relations. (Manuscript.)Google Scholar
Stoltenberg-Hansen, V., Lindström, I. and Griffor, E.R. (1994) Mathematical Theory of Domains, Cambridge University Press.CrossRefGoogle Scholar
Stoltenberg-Hansen, V. and Tucker, J.V. (1985) Complete local rings as domains. CTCS Report 1.85, University of Leeds.Google Scholar
Stoltenberg-Hansen, V. and Tucker, J.V. (1988) Complete local rings as domains. Journal of Symbolic Logic 53 603624.CrossRefGoogle Scholar
Stoltenberg-Hansen, V. and Tucker, J.V. (1991) Algebraic and fixed point equations over inverse limits of algebras. Theoretical Computer Science 87 124.CrossRefGoogle Scholar
Stoltenberg-Hansen, V. and Tucker, J.V. (1993) Infinite systems of equations over inverse limits and infinite synchronous concurrent algorithms. In: de Bakker, J.W., de Roever, W.-P. and Rozenberg, G. (eds.) Semantics: Foundations and Applications. Springer-Verlag Lecture Notes in Computer Science 666 531–562.CrossRefGoogle Scholar
Stoltenberg-Hansen, V. and Tucker, J.V. (1995) Effective algebra. In: Abramsky, S. et al. (eds.) Handbook of Logic in Computer Science, volume IV, Oxford University Press 357526.CrossRefGoogle Scholar
Stoltenberg-Hansen, V. and Tucker, J.V. (1999a) Computable rings and fields. In: Handbook of computability theory. Stud. Logic Found. Math. 140, North-Holland 363447.CrossRefGoogle Scholar
Stoltenberg-Hansen, V. and Tucker, J.V. (1999b) Concrete models of computation for topological algebras. Theoretical Computer Science 219 347378.CrossRefGoogle Scholar
Stoltenberg-Hansen, V. and Tucker, J.V. (2007) Computability on topological spaces via domain representations (to appear).CrossRefGoogle Scholar
Tucker, J. V. and Zucker, J.I. (2000) Computable functions and semicomputable sets on many-sorted algebras. In: Abramsky, S. et al. (eds.) Handbook of Logic in Computer Science, volume V, Oxford University Press 317523.Google Scholar
Tucker, J.V. and Zucker, J.I. (2004) Abstract versus concrete computation on metric partial algebras. ACM Transactions on Computational Logic 5 (4)611668.CrossRefGoogle Scholar
Waagbø, G.A. (1997) Domains-with-totality semantics for Intuitionistic Type Theory, Ph.D. thesis, University of Oslo.Google Scholar
Weihrauch, K. (1987) Computability. EATCS Monographs on Theoretical Computer Science 9 Springer-Verlag.Google Scholar
Weihrauch, K. (2000) An Introduction to Computable Analysis, Springer-Verlag.CrossRefGoogle Scholar
Weihrauch, K. and Schreiber, U. (1981) Embedding metric spaces into cpo's. Theoretical Computer Science 16 524.CrossRefGoogle Scholar