Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-26T02:04:43.312Z Has data issue: false hasContentIssue false

Automorphisms of types in certain type theories and representation of finite groups

Published online by Cambridge University Press:  23 May 2018

SERGEI SOLOVIEV*
Affiliation:
IRIT, University of Toulouse-3, 118, route de Narbonne, 31062, Toulouse, France. Email: soloviev@irit.fr ITMO University, 49, Kronverkski prospekt, 197101, St. Petersburg, Russia (associated researcher)

Abstract

The automorphism groups of types in several systems of type theory are studied. It is shown that in simply typed λ-calculus λ1βη and in its extension with surjective pairing and terminal object these groups correspond exactly to the groups of automorphisms of finite trees. In second-order λ-calculus and in Luo's framework (LF) with dependent products, any finite group may be represented.

Type
Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

In memoriam Kosta Doen

References

Asperti, A. and Longo, G. (1991). Categories, Types and Structures. Category Theory for the Working Computer Scientist, M.I.T. Press.Google Scholar
Babai, L. (1995). Automorphism groups, isomorphism, reconstruction. In: Graham, R. L. et al., eds. Handbook of Combinatorics, Elsevier, vol. 2, 14471541.Google Scholar
Balat, V. and Di Cosmo, R. (1999). A Linear Logical View of Linear Type Isomorphisms. Lecture Notes in Computer Science, Springer-Verlag, vol. 1683, 250265.Google Scholar
Barendregt, H. (1984). The Lambda Calculus: Its Syntax and Semantics (revised edition), North-Holland Plc.Google Scholar
Barthe, G. (2005). A computational view of implicit coercions in type theory. Mathematical Structures in Computer Science 15 (5) 839874.Google Scholar
Brown, R., Higgins, Ph. G., and Sivera, R. (2011). Nonabelian Algebraic Topology, European Math. Society.Google Scholar
Bruce, K. and Longo, G. (1985). Provable isomorphisms and domain equations in models of typed languages. In: Proceedings of the ACM Symposium on Theory of Computing (STOC 85) 263–272.Google Scholar
Bruce, K., Di Cosmo, R., and Longo, G. (1992). Provable isomorphisms of types. Mathematical Structures in Computer Science (Special Issue) 2 (2) 231247.Google Scholar
Clairambault, P. (2012). Isomorphisms of types in the presence of higher-order references. Logical Methods in Computer Science 8 128.Google Scholar
Coppo, M., Dezani-Ciancaglini, M., Margaria, I., Zacchi, M. (2017). Isomorphism of intersection and union types. Mathematical Structures in Computer Science 27 (5) 603625.Google Scholar
Coppo, M., Dezani-Ciancaglini, M., Díaz-Caro, A., Margaria, I., Zacchi, M. (2016). Retractions in intersection types. In: Kobayashi, N. (ed.) ITRS 2016, EPTCS 242, 31–47.Google Scholar
Coquand, T. and Huet, G. (1988). The calculus of constructions. Information and Computation 76 (23) 95120.Google Scholar
Delahaye, D. (1999). Information retrieval in a coq proof library using type isomorphisms. In: Altenkirch, T. et al., (eds.) TYPES 1999, Lecture Notes in Computer Science, Springer-Verlag, vol. 1956, 131147.Google Scholar
Dezani-Ciancaglini, M. (1976). Characterization of normal forms possessing inverse in the λ-β-η-calculus. Theoretical Computer Science 2 323337.Google Scholar
Di Cosmo, R. (1995). Isomorphisms of Types: From Lambda-Calculus to Information Retrieval and Language Design, Birkhauser.Google Scholar
Dosen, K. and Petric, Z. (1997). Isomorphic objects in symmetric monoidal closed categories. Mathematical Structures in Computer Science 7 639662.Google Scholar
Fiore, M. (2004). Isomorphisms of generic recursive polynomial types. In: POPL '04, New York, NY, USA, ACM, 7788.Google Scholar
Fiore, M., Di Cosmo, R., and Balat, V. (2006). Remarks on isomorphisms in typed lambda calculi with empty and sum types. Annals of Pure and Applied Logic 141 (1) 3550.Google Scholar
Frucht, R. (1938). Herstellung von Graphen mit vorgegebener abstrakten Gruppe. Kompositio Math. 6 3950.Google Scholar
Frucht, R. (1949). Graphs of degree three with a given abstract group. Canadian Journal of Mathematics 1 365378.Google Scholar
Goguen, H. (1994). A Typed Operational Semantics for Type Theory. PhD thesis, University of Edinburgh, UK.Google Scholar
Hankin, Chr. (1994). Lambda Calculi: A Guide for Computer Scientists, Clarendon Press, Oxford.Google Scholar
Harari, F. (1969). Graph Theory, Addison-Wesley PLC.Google Scholar
Hall, M. (Jr.) (1959). The Theory of Groups, The Macmillan Company, N.-Y.Google Scholar
Lambek, J. and Scott, P.J. (1988). Introduction to Higher-Order Categorical Logic, Cambridge Studies in Advanced Mathematics, Cambridge University Press, UK.Google Scholar
Longo, G., Milsted, K. and Soloviev, S. (1993). The genericity theorem and effective parametricity in polymorphic lambda-calculus. Theoretical Computer Science 121 323349.Google Scholar
Luo, Z. (1994). Computation and Reasoning. A Type Theory for Computer Science. International Series of Monographs on Computer Science, vol. 11, Oxford Science Publications, Clarendon Press, Oxford, UK.Google Scholar
Luo, Z., Soloviev, S. and Xue, T. (2013). Coercive subtyping: Theory and implementation. Information and Computation 223 1842.Google Scholar
Mac Lane, S. (1976). Topology and logic as a source of algebra. Bulletin of the American Mathematical Society 82 (1) 140.Google Scholar
Marie-Magdeleine, L. (2009). Sous-typage coercitif en présence de réductions non-standards dans un système aux types dépendants. Thèse de doctorat. Université Toulouse-3 Paul Sabatier.Google Scholar
Pólya, G. (1937). Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Mathematica 68 145254.Google Scholar
Soloviev, S. and Luo, Z. (2002). Coercion completion and conservativity in coercive subtyping. Annals of Pure and Applied Logic 113 (1–3) 297322.Google Scholar
Solov'ev, S. V. (1983). The category of finite sets and cartesian closed categories. Journal of Soviet Mathematics 22 (3) 13871400.Google Scholar
Soloviev, S. V. (1993). A complete axiom system for isomorphism of types in closed categories. In: Voronkov, A., (ed.) LPAR'93, Lecture Notes in Artificial Intelligence, Springer-Verlag, vol. 698, 360371.Google Scholar
Soloviev, S. (2015). On isomorphism of dependent products in a typed logical framework. In: Post-proceedings of 20th International Conference on Types for Proofs and Programs, TYPES 2014, May 12–15, 2014, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Paris, France, LIPICS, vol. 39, 275288.Google Scholar
Stirling, C. (2013). Proof systems for retracts in simply typed lambda calculus. In: Fomin, F. V. et al., (eds.) ICALP (2) Lecture Notes in Computer Science 7966, Springer-Verlag, 398409.Google Scholar
The Univalent Foundations Program (2013). Homotopy Type Theory: Univalent Foundations of Mathematics. Available at https://homotopytypetheory.org/book, Institute for Advanced Study, Princeton.Google Scholar
White, A. T. (1984). Graphs, Groups and Surfaces, North-Holland, Amsterdam.Google Scholar