Skip to main content Accessibility help

Unknotting sequences for torus knots



The unknotting number of a knot is bounded from below by its slice genus. It is a well-known fact that the genera and unknotting numbers of torus knots coincide. In this paper we characterize quasipositive knots for which the genus bound is sharp: the slice genus of a quasipositive knot equals its unknotting number, if and only if the given knot appears in an unknotting sequence of a torus knot.



Hide All
[1]Baader, S.Slice and Gordian numbers of track knots. Osaka J. Math. 42 (2005), 257271.
[2]Baader, S.Note on crossing changes. Q. J. Math. 57 (2006), 139142.
[3]Boileau, M. and Orevkov, S.Quasi-positivité d'une courbe analytique dans une boule pseudo-convexe. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 9, 825830.
[4]Boileau, M. and Weber, C.Le problème de J. Milnor sur le nombre gordien des nœuds algébriques. Enseign. Math. (2) 30 (1984), no. 34, 173222.
[5]Hedden, M. and Ording, P. The Ozsváth-Szabó and Rasmussen concordance invariants are not equal. ArXiv: math.GT/0512348, 2005.
[6]Kawamura, T.On unknotting numbers and four-dimensional clasp numbers of links. Proc. Amer. Math. Soc. 130 (2002), no. 1, 243252.
[7]Kronheimer, P. B. and Mrowka, T. S.The genus of embedded surfaces in the projective plane. Math. Res. Lett. 1 (1994), no. 6, 797808.
[8]Nakamura, T.Four-genus and unknotting number of positive knots and links. Osaka J. Math. 37 (2000), no. 2, 441451.
[9]Rasmussen, J. Khovanov homology and the slice genus. ArXiv: math.GT/0402131, 2004.
[10]Rolfsen, D.Knots and Links (Publish or Perish, 1976).
[11]Rudolph, L.Algebraic functions and closed braids. Topology 22 (1983), no. 2, 191202.
[12]Rudolph, L.Quasipositivity as an obstruction to sliceness. Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 5159.
[13]Rudolph, L.Positive links are strongly quasipositive. Proceedings of the Kirbyfest (Berkeley, CA, 1998), 555562, Geom. Topol. Monogr. 2 (Geom. Topol. Publ., Coventry, 1999).
[14]Wendt, H.Die gordische Auflösung von Knoten. Math. Z. 42 (1937), no. 1, 680696.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed