Skip to main content Accessibility help
×
Home

Tb theorem on product spaces

  • YONGSHENG HAN (a1), MING-YI LEE (a2) and CHIN-CHENG LIN (a2)

Abstract

In this paper, we prove a Tb theorem on product spaces $\mathbb{R}$ n × $\mathbb{R}$ m, where b(x1, x2) = b1(x1)b2(x2), b1 and b2 are para-accretive functions on $\mathbb{R}$ n and $\mathbb{R}$ m, respectively.

Copyright

References

Hide All
[1]David, G. and Journé, J.-L.. A boundedness criterion for generalised Calderón–Zygmund operators. Ann. of Math. 120 (1984), 371397.
[2]David, G., Journé, J.-L. and Semmes, S.. Operateurs de Calderón–Zygmund, fonctions para-accretive et interpolation. Rev. Mat. Iberoamericana 1 (1985), no. 4, 156.
[3]Frazier, M. and Jawerth, B.. A discrete transform and decompositions of distribution spaces J. Funct. Anal. 93 (1990), 34170.
[4]Fefferman, C. and Stein, E. M.. Some maximal inequalities. Amer. J. Math. 93 (1971), 107115.
[5]Han, Y.. Calderón-type reproducing formula and the Tb theorem. Rev. Mat. Iberoamericana 10 (1994), 5191.
[6]Han, Y., Lee, M.-Y., Lin, C.-C. and Lin, Y.-C.. Calderón–Zygmund operators on product Hardy spaces. J. Funct. Anal. 258 (2010), 28342861.
[7]Long, R.-L. and Zhu, X.-X.. L 2-boundedness of some singular integral operators on product domains. Sci. China Ser. A 36 (1993), 538549.
[8]Journé, J.-L.. Calderón–Zygmund operators on product spaces. Rev. Mat. Iberoamericana 1 (1985), 5591.
[9]McIntosh, A. and Meyer, Y.. Algèbres d'opérateurs définis par intégrales singulières. C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 395397.
[10]Ou, Y.. A T(b) theorem on product spaces. Trans. Amer. Math. Soc. 367 (2015), 61596197.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed