Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T02:52:27.633Z Has data issue: false hasContentIssue false

Spectral theory of large Wiener–Hopf operators with complex-symmetric kernels and rational symbols

Published online by Cambridge University Press:  27 April 2011

ALBRECHT BÖTTCHER
Affiliation:
Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany. e-mail: albrecht.boettcher@mathematik.tu-chemnitz.de
SERGEI GRUDSKY
Affiliation:
Departamento de Matemáticas, CINVESTAV del I.P.N., Apartado Postal 14-740, 07000 México, D.F., México. e-mail: grudsky@math.cinvestav.mx
ARIEH ISERLES
Affiliation:
Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB30WA. e-mail: a.iserles@damtp.cam.ac.uk

Abstract

This paper is devoted to the asymptotic behaviour of individual eigenvalues of truncated Wiener–Hopf integral operators over increasing intervals. The kernel of the operators is complex-symmetric and has a rational Fourier transform. Under additional hypotheses, the main result describes the location of the eigenvalues and provides their asymptotic expansions in terms of the reciprocal of the length of the truncation interval. Also determined is the structure of the eigenfunctions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bogoya, M., Böttcher, A. and Grudsky, S. Asymptotics of individual eigenvalues of a class of large Hessenberg Toeplitz matrices. Operator Theory: Adv. Appl. To appear.Google Scholar
[2]Böttcher, A.Wiener–Hopf determinants with rational symbols. Math. Nachr. 144 (1989), 3964.CrossRefGoogle Scholar
[3]Böttcher, A., Brunner, H., Iserles, A. and Nørsett, S.On the singular values and eigenvalues of the Fox–Li and related operators. New York J. Math. 16 (2010), 539561.Google Scholar
[4]Böttcher, A., Grudsky, S., Huybrechs, D. and Iserles, A. First-order trace formulas for the iterates of the Fox–Li operator. To appear.Google Scholar
[5]Böttcher, A., Grudsky, S. and Maksimenko, E. A.Inside the eigenvalues of certain Hermitian Toeplitz band matrices. J. Comput. Appl. Math. 233 (2010), 22452264.CrossRefGoogle Scholar
[6]Böttcher, A. and Silbermann, B.Introduction to Large Truncated Toeplitz Matrices (Springer-Verlag, 1999).CrossRefGoogle Scholar
[7]Böttcher, A. and Widom, H.Two remarks on spectral approximations for Wiener–Hopf operators. J. Integral Equations Appl. 6 (1994), 3136.CrossRefGoogle Scholar
[8]Brunner, H., Iserles, A. and Nørsett, S. P.The spectral problem for a class of highly oscillatory Fredholm integral operators. IMA J. Numer. Analysis 30 (2010), 108130.CrossRefGoogle Scholar
[9]Brunner, H., Iserles, A. and Nørsett, S. P. The computation of the spectra of highly oscillatory Fredholm integral operators. J. Integral Equations Appl. To appear.Google Scholar
[10]Cochran, J. A.Analysis of Linear Integral Equations (McGraw–Hill, 1972).Google Scholar
[11]Gesztesy, F. and Makarov, K. A.(Modified) Fredholm determinants for operators with matrix–valued semi–separable integral kernels revisited. Integral Equations Operator Theory 47 (2003), 457497 and 48 (2004), 425–426.Google Scholar
[12]Gohberg, I. and Feldman, I. A.Convolution Equations and Projection Methods for Their Solution (Amer. Math. Soc., 1974).Google Scholar
[13]Landau, H.The notion of approximate eigenvalues applied to an integral equation of laser theory. Quart. Appl. Math. 35 (1977/78), 165172.CrossRefGoogle Scholar
[14]Landau, H. and Widom, H.Eigenvalue distribution of time and frequency limiting. J. Math. Analysis Appl. 77 (1980), 469481.CrossRefGoogle Scholar
[15]Tilli, P.Some results on complex Toeplitz eigenvalues. J. Math. Anal. Appl. 239 (1999), 390401.CrossRefGoogle Scholar
[16]Widom, H.On the eigenvalues of certain Hermitian forms. Trans. Amer. Math. Soc. 88 (1958), 491522.CrossRefGoogle Scholar
[17]Widom, H.Extreme eigenvalues of translation kernels. Trans. Amer. Math. Soc. 100 (1961), 252262.CrossRefGoogle Scholar
[18]Widom, H.Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index. Operator Theory: Adv. Appl. 48 (1990), 387421.Google Scholar