[1]Archbold, R. J. and an Huef, A.Strength of convergence in the orbit space of a transformation group. J. Funct. Anal. 235 (2006), 90–121.

[2]Archbold, R. J. and an Huef, A.Strength of convergence and multiplicities in the spectrum of a *C**-dynamical system. Proc. London Math. Soc. 96 (2008), 545–581.

[3]Archbold, R. J. and Somerset, D. W. B.Transition probabilities and trace functions for *C**-algebras. Math. Scand. 73 (1993), 81–111.

[4]Clark, L. O.Classifying the type of principal groupoid *C**-algebras. J. Operator Theory. 57 (2007), 251–266.

[5]Clark, L. O.CCR and GCR Groupoid *C**-algebras. Indiana Univ. Math. J. 56 (2007), 2087–2110.

[6]Clark, L. O. and an Huef, A.Principal groupoid *C**-algebras with bounded trace. Proc. Amer. Math. Soc. 136 (2008), 623–634.

[7]Dixmier, J.C*-algebras. (North-Holland, 1977).

[8]Echterhoff, S.On transformation group *C**-algebras with continuous trace. Trans. Amer. Math. Soc. 343 (1994), 117–133.

[9]Ephrem, M.Characterizing liminal and type I graph *C**-algebras. J. Operator Theory. 52 (2004), 303–323.

[10]Glimm, J.Locally compact transformation groups. Trans. Amer. Math. Soc. 101 (1961), 124–128.

[11]Gootman, E. C.The type of some *C**- and *W**-algebras associated with transformation groups. Pacific J. Math. 48 (1973), 93–106.

[12]Green, P.*C**-algebras of transformation groups with smooth orbit space. Pacific J. Math. 72 (1977), 71–97.

[13]Hazlewood, R. Classifying higher-rank graph algebras using the path groupoid. In preparation.

[14]Hazlewood, R. and an Huef, A.The strength of convergence in the orbit space of a groupoid. J. Math. Anal. Appl. 383 (2011), 1–24.

[15]an Huef, A.The transformation groups whose *C**-algebras are Fell algebras. Bull. London Math. Soc. 33 (2001), 73–76.

[16]an Huef, A.Integrable actions and the transformation groups whose *C**-algebras have bounded trace. Indiana Univ. Math. J. 51 (2002), 1197–1233.

[17]Kumjian, A.On *C**-diagonals. Canad. J. Math. 38 (1986), 969–1008.

[18]Kumjian, A., Pask, D., Raeburn, I. and Renault, J.Graphs, groupoids and Cuntz–Krieger algebras. J. Funct. Anal. 144 (1997), 505–541.

[19]Muhly, P. S. and Williams, D. P.Continuous trace groupoid *C**-algebras. Math. Scand. 66 (1990), 231–241.

[20]Muhly, P. S. and Williams, D. P.Continuous trace groupoid *C**-algebras II. Math. Scand. 70 (1992), 127–145.

[21]Muhly, P. S., Renault, J. and Williams, D. P.Continuous trace groupoid *C**-algebras, III. Trans. Amer. Math. Soc. 348 (1996), 3621–3641.

[22]Pedersen, G. K.C*-algebras and their automorphism groups. (Academic Press, 1979).

[23]Raeburn, I. and Williams, D. P. Morita equivalence and continuous-trace *C**-Algebras. Math. Surveys and Monographs, vol. 60 (*Amer. Math. Soc.*, 1998).

[24]Ramsay, A.The Mackey–Glimm dichotomy for foliations and other Polish groupoids. J. Funct. Anal. 94 (1990), 358–374.

[25]Renault, J. A groupoid approach to *C**-algebras. Lecture Notes in Math. No. 793 (Springer-Verlag, 1980).

[26]Renault, J.Représentations des produits croisés d'algèbres de groupoides. J. Operator Theory 18 (1987), 67–97.

[27]Renault, J.The ideal structure of groupoid crossed product *C**-algebras. J. Operator Theory 25 (1991), 3–36.

[28]Williams, D. P.The topology on the primitive ideal space of transformation group *C**-algebras and CCR transformation group *C**-algebras. Trans. Amer. Math. Soc. 266 (1981), 335–359.

[29]Williams, D. P.Transformation group *C**-algebras with continuous trace. J. Funct. Anal. 41 (1981), 40–76.

[30]Williams, D. P. Crossed products of *C**-algebras. Math. Surveys and Monographs, vol. 134 (Amer. Math. Soc., 2007).