Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-26T15:15:53.731Z Has data issue: false hasContentIssue false

Point processes on spaces of flats and other homogeneous spaces

Published online by Cambridge University Press:  24 October 2008

F. Papangelou
Affiliation:
University of Manchester

Extract

The present paper is primarily concerned with the structure of certain random sets of flats in n-dimensional Euclidean space Rn. To be more specific, let be the space of k-dimensional affine subspaces of Rn (to be called k-flats below), equipped with its natural topology ((14), p. 132). is a topological homogeneous space under the action of the group of Euclidean displacements in Rn and our purpose is to give conditions under which a stochastic point process on , stationary under , is a doubly stochastic Poisson process. The results will be seen to apply equally well to abstract spaces sharing some of the structural properties of .

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Blaschke, W.Integralgeometrie (Paris, Hermann, 1935).Google Scholar
(2)Bourbaki, N.Topologie générale, 3rd ed., chap. 3 (Paris, Hermann, 1960).Google Scholar
(3)Bourbaki, N.Topologie générale, 2nd ed., chap. 9 (Paris, Hermann, 1958).Google Scholar
(4)Bourbaki, N.Intégration, chap. 7 (Paris, Hermann, 1963).Google Scholar
(5)Davidson, R. Stochastic processes of flats and exchangeability. In Stochastic geometry, ed. Harding, E. F. and Kendall, D. G., pp. 1345 (London, Wiley, 1974).Google Scholar
(6)Davidson, R. Construction of line processes: second-order properties. In Stochastic geometry, ed. Harding, E. F. and Kendall, D. G., pp. 5575 (London, Wiley, 1974).Google Scholar
(7)Krickeberg, K.The Cox process. Sympos. Math. Roma 9 (1972), Calcolo Probab. Teor. Turbolenza. 1971, pp. 151167.Google Scholar
(8)Krickeberg, K. Invariance properties of the correlation measure of line processes. In Stochastic geometry, ed. Harding, E. F. and Kendall, D. G., pp. 7688 (London, Wiley, 1974).Google Scholar
(9)Krickeberg, K. Moments of point processes. In Stochastic geometry, ed. Harding, E. F. and Kendall, D. G., pp. 89113 (London, Wiley, 1974).Google Scholar
(10)Kristensen, L.Invariant metrics in coset spaces. Math. Stand. 6 (1958), 3336.Google Scholar
(11)Kummer, G. and Matthes, K.Verallgemeinerung eines Satzes von Sliwnjak II. Rev. Boum. Math. Pures et Appl. 15 (1970), 845870.Google Scholar
(12)Leadbetier, M. R.On basic results of point process theory. Proc. of Sixth Berkeley Symposium on Math. Statistics and Probability, vol. III (1972), pp. 449462Google Scholar
(13)Loéve, M.Probability theory, 3rd ed. (Princeton, D. van Nostrand, 1963).Google Scholar
(14)Nachbin, L.The Haar integral (Princeton, D. van Nostrand, 1965).Google Scholar
(15)Papangelou, F. The Ambrose-Kakutani theorem and the Poisson process. In Contributions to ergodic theory and probability. Lecture Notes in Math. 160, pp. 234240. (Berlin, Springer-Verlag, 1970).Google Scholar
(16)Papangelou, F. On the Palm probabilities of processes of points and processes of lines. In Stochastic geometry, ed. Harding, E. F. and Kendall, D. G., pp. 114147 (London, Wiley, 1974).Google Scholar
(17)Papangelou, F.The conditional intensity of general point processes and an application to line processes. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 28 (1974), 207226.Google Scholar
(18)Parthasarathy, K. R.Probability measures on metric spaces (New York, Academic Press, 1967).CrossRefGoogle Scholar
(19)Rélnyi, A. Remarks on the Poisson process. Proc. of Symposium on Probability Methods in Analysis. Lecture Notes in Math. 31, pp. 280–286 (Berlin, Springer-Verlag, 1967).Google Scholar
(20)Ryll-Nardzewski, C.Remarks on processes of calls. Proc. of Fourth Berkeley Symposium on Math. Statistics and Probability, vol. II (1961), pp. 455465.Google Scholar
(21)Santaló, L. A.Introduction to integral geometry (Paris, Hermann, 1953).Google Scholar