Skip to main content Accessibility help

Partial Castelnuovo–Mumford regularities of sums and intersections of powers of monomial ideals

  • LÊ TUÂN HOA (a1) and TRÂN NAM TRUNG (a1)


Let I, I11,. . ., I1q1,. . ., Ip1,. . ., Ipqp be monomial ideals of a polynomial ring R = K[X1,. . ., Xr] and Ln = I+∩jIn1j + ⋅ ⋅ ⋅ + ∩jIpjn. It is shown that the ai-invariant ai(R/Ln) is asymptotically a quasi-linear function of n for all n ≫ 0, and the limit limn→∞ad(R/Ln)/n exists, where d = dim(R/L1). A similar result holds if I11,. . ., I1q1,. . ., Ip1,. . ., Ipqp are replaced by their integral closures. Moreover all limits also exist.

As a consequence, it is shown that there are integers p > 0 and 0 ≤ ed = dim R/I such that reg(In) = pn + e for all n ≫ 0 and pn ≤ reg(In) ≤ pn + d for all n > 0 and that the asymptotic behavior of the Castelnuovo–Mumford regularity of ordinary symbolic powers of a square-free monomial ideal is very close to a linear function.



Hide All
[1]Cutkosky, D., Ein, L. and Lazarsfeld, R.Positivity and complexity of ideal sheaves. Math. Ann. 321 (2001), no. 2, 213234.
[2]Cutkosky, D., Herzog, J., Trung, N. V.Asymptotic behavior of the Castelnuovo–Mumford regularity. Compositio Math. 118 (1999), 243261.
[3]Eisenbud, D.Commutative algebra with a view toward algebraic geometry. Graduate Texts in Math. (Springer-Verlag, 1995).
[4]Giang, D. H. and Hoa, L. T. On local cohomology of a tetrahedral curve. Acta Math. Vietnam. (to appear); ArXiv: 0910.0919.
[5]Goto, S. and Watanabe, K.On graded rings, I. J. Math. Soc. Japan. 30 (1978), 179213.
[6]Herzog, J., Hibi, T. and Trung, N. V.Symbolic powers of monomial ideals and vertex cover algebra. Adv. Math. 210 (2007), 304322.
[7]Herzog, J., Hoa, L. T. and Trung, N. V.Asymptotic linear bounds for the Castelnuovo–Mumford regularity. Trans. Amer. Math. Soc. 354 (2002), 17931809.
[8]Hoa, L. T. and Hyry, E.On local cohomology and Hilbert function of powers of ideals. Manuscripta Math. 112 (2003), 7792.
[9]Hoa, L. T. and Trung, N. V.On the Castelnuovo–Mumford regularity and the arithmetic degree of monomial ideals. Math. Z. 229 (1998), 519537.
[10]Hoa, L. T. and Trung, T. N.Castelnuovo–Mumford regularity of sums of powers of polynomial ideals. Comm. Algebra 36 (2008), 806820.
[11]Katzman, M.The complexity of Frobenius powers of ideals. J. Algebra 203 (1998), 211225.
[12]Kodiyalam, V.Asymptotic behavior of Castelnouvo-Mumford regularity. Proc. Amer. Math. Soc. 128 (2000), 407411.
[13]Reid, L., Roberts, L. G. and Vitulli, M. A.Some results on normal homogeneous ideals. Comm. Algebra 31 (2003), 44854506.
[14]Schrijver, A., Theory of linear and integer programming. (John Wiley & Sons, Ltd., 1986).
[15]Stanley, R. P.Combinatorics and Commutative Algebra (Birkhauser, 1996).
[16]Takayama, Y.Combinatorial characterizations of generalized Cohen-Macaulay monomial ideals. Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 48 (96) (1987), 327344.
[17]Trung, N. V.Gröbner bases, local cohomology and reduction number. Proc. Amer. Math. Soc. 129 (2001), 918.
[18]Trung, N. V. and Wang, H. J.On the asymptotic linearity of Castelnuovo–Mumford regularity. J. Pure Appl. Algebra 201 (2005), 4248.
[19]Trung, T. N.Regularity index of Hilbert function of powers of ideals. Proc. Amer. Math. Soc. 137 (2009), 21692174.

Related content

Powered by UNSILO

Partial Castelnuovo–Mumford regularities of sums and intersections of powers of monomial ideals

  • LÊ TUÂN HOA (a1) and TRÂN NAM TRUNG (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.