Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-02T10:02:10.116Z Has data issue: false hasContentIssue false

The ℓ-parity conjecture over the constant quadratic extension

Published online by Cambridge University Press:  07 August 2017

KĘSTUTIS ČESNAVIČIUS*
Affiliation:
Mathematisches Institut, Raum 4.025, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Deutschland e-mail: kestutis@berkeley.edu

Abstract

For a prime ℓ and an abelian variety A over a global field K, the ℓ-parity conjecture predicts that, in accordance with the ideas of Birch and Swinnerton–Dyer, the ℤ-corank of the ℓ-Selmer group and the analytic rank agree modulo 2. Assuming that char K > 0, we prove that the ℓ-parity conjecture holds for the base change of A to the constant quadratic extension if ℓ is odd, coprime to char K, and does not divide the degree of every polarisation of A. The techniques involved in the proof include the étale cohomological interpretation of Selmer groups, the Grothendieck–Ogg–Shafarevich formula and the study of the behavior of local root numbers in unramified extensions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Čes15] Česnavičius, K. Topology on cohomology of local fields. Forum Math. Sigma 3 (2015), e16, 55. DOI 10.1017/fms.2015.18.Google Scholar
[Čes16a] Česnavičius, K. Local factors valued in normal domains. Int. J. Number Theory 12 (2016), no. 1, 249272. DOI 10.1142/S1793042116500159. MR3455278.Google Scholar
[Čes16b] Česnavičius, K. Selmer groups as flat cohomology groups. J. Ramanujan Math. Soc. 31 (2016), no. 1, 3161, MR3476233.Google Scholar
[Čes16c] Česnavičius, K. The p-parity conjecture for elliptic curves with a p-isogeny. J. reine angew. Math. 719 (2016), 4573. DOI 10.1515/crelle-2014-0040. MR3552491.Google Scholar
[Čes17] Česnavičius, K. p-Selmer growth in extensions of degree p. J. Lond. Math. Soc. (2) 95 (2017), no. 3, 833852. DOI 10.1112/jlms.12038.Google Scholar
[CFKS10] Coates, J., Fukaya, T., Kato, K. and Sujatha, R. Root numbers, Selmer groups and non-commutative Iwasawa theory. J. Algebraic Geom. 19 (2010), no. 1, 1997. DOI 10.1090/S1056-3911-09-00504-9. MR2551757 (2011a:11127).Google Scholar
[Dav10] Davydov, A. Twisted automorphisms of group algebras. Noncommutative structures in mathematics and physics, Vlaam, K.. (Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2010), pp. 131150, MR2742735 (2012b:16085).Google Scholar
[Del73] Deligne, P. Les constantes des équations fonctionnelles des fonctions L, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Springer: Berlin) (1973), pp. 501597. Lecture Notes in Math. vol. 349 (French). MR0349635 (50 #2128).Google Scholar
[DD08] Dokchitser, T. and Dokchitser, V. Parity of ranks for elliptic curves with a cyclic isogeny. J. Number Theory 128 (2008), no. 3, 662679. DOI 10.1016/j.jnt.2007.02.008. MR2389862 (2009c:11079).Google Scholar
[DD09a] Dokchitser, T. and Dokchitser, V. Regulator constants and the parity conjecture. Invent. Math. 178 (2009), no. 1, 2371. DOI 10.1007/s00222-009-0193-7. MR2534092 (2010j:11089).Google Scholar
[DD09b] Dokchitser, T. and Dokchitser, V. Self-duality of Selmer groups. Math. Proc. Camb. Phil. Soc. 146 (2009), no. 2, 257267. DOI 10.1017/S0305004108001989. MR2475965 (2010a:11219).Google Scholar
[DD10] Dokchitser, T. and Dokchitser, V. On the Birch–Swinnerton–Dyer quotients modulo squares. Ann. of Math. (2) 172 (2010), no. 1, 567596. DOI 10.4007/annals.2010.172.567. MR2680426 (2011h:11069).Google Scholar
[DD11] Dokchitser, T. and Dokchitser, V. Root numbers and parity of ranks of elliptic curves. J. reine angew. Math. 658 (2011), 3964. DOI 10.1515/CRELLE.2011.060. MR2831512.Google Scholar
[GA09] González-Avilés, C. D. Arithmetic duality theorems for 1-motives over function fields. J. reine angew. Math. 632 (2009), 203231. DOI 10.1515/CRELLE.2009.055. MR2544149 (2010i:11169).Google Scholar
[GH70] Gamst, J. and Hoechsmann, K. Products in sheaf-cohomology. Tôhoku Math. J. (2) 22 (1970), 143162. MR0289605 (44 #6793).Google Scholar
[GH71] Gamst, J. and Hoechsmann, K. Ext-products and edge-morphisms. Tôhoku Math. J. (2) 23 (1971), 581588. MR0302741 (46 #1884).Google Scholar
[GH81] Gross, B. H. and Harris, J. Real algebraic curves. Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 157182. MR631748 (83a:14028).Google Scholar
[HR79] Hewitt, E. and Ross, K. A. Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] vol. 115, (Springer-Verlag: Berlin, 1979), Structure of topological groups, integration theory, group representations, MR551496 (81k:43001).Google Scholar
[HS05] Harari, D. and Szamuely, T. Arithmetic duality theorems for 1-motives. J. reine angew. Math. 578 (2005), 93128. DOI 10.1515/crll.2005.2005.578.93. MR2113891 (2006f:14053).Google Scholar
[HS05e] Harari, D. and Szamuely, T. Corrigenda for: Arithmetic duality theorems for 1-motives [MR 2113891]. J. reine angew. Math. 632 (2009), 233236. DOI 10.1515/CRELLE.2009.056, MR2544150 (2010i:14079).Google Scholar
[Kim07] Du Kim, B. The parity conjecture for elliptic curves at supersingular reduction primes. Compos. Math. 143 (2007), no. 1, 4772. DOI 10.1112/S0010437X06002569. MR2295194 (2007k:11091).Google Scholar
[Kis04] Kisilevsky, H. Rank determines semi-stable conductor. J. Number Theory 104 (2004), no. 2, 279286. DOI 10.1016/S0022-314X(03)00157-4. MR2029506 (2005h:11137).Google Scholar
[KMR13] Klagsbrun, Z., Mazur, B. and Rubin, K. Disparity in Selmer ranks of quadratic twists of elliptic curves. Ann. of Math. (2) 178 (2013), no. 1, 287320. DOI 10.4007/annals.2013.178.1.5. MR3043582.Google Scholar
[McC86] McCallum, W. G. Duality theorems for Néron models. Duke Math. J. 53 (1986), no. 4, 10931124. DOI 10.1215/S0012-7094-86-05354-8. MR874683 (88c:14062).Google Scholar
[Mil80] Milne, J. S. Étale cohomology. Princeton Mathematical Series, vol. 33. Princeton University Press: Princeton, N.J., 1980. MR559531 (81j:14002).Google Scholar
[Mil06] Milne, J. S. Arithmetic Duality Theorems, 2nd. ed., (BookSurge, LLC, Charleston, SC, 2006), MR2261462 (2007e:14029).Google Scholar
[Mon96] Monsky, P. Generalizing the Birch-Stephens theorem. I. Modular curves. Math. Z. 221 (1996), no. 3, 415420. DOI 10.1007/PL00004518. MR1381589 (97a:11103).Google Scholar
[Mor15] Morgan, A. 2-Selmer parity for hyperelliptic curves in quadratic extensions. Preprint, Available at http://arxiv.org/abs/1504.01960. (2015).Google Scholar
[MR07] Mazur, B. and Rubin, K. Finding large Selmer rank via an arithmetic theory of local constants. Ann. of Math. (2) 166 (2007), no. 2, 579612. DOI 10.4007/annals.2007.166.579. MR2373150 (2009a:11127).Google Scholar
[Nek06] Nekovář, J. Selmer complexes. Astérisque, no. 310 (2006), viii+559 (English, with English and French summaries). MR2333680 (2009c:11176).Google Scholar
[Nek13] Nekovář, J. Some consequences of a formula of Mazur and Rubin for arithmetic local constants. Algebra Number Theory 7 (2013), no. 5, 11011120. DOI 10.2140/ant.2013.7.1101. MR3101073.Google Scholar
[Nek15] Nekovář, J. Compatibility of arithmetic and algebraic local constants (the case ℓ ≠ p). Compos. Math. 151 (2015), no. 9, 16261646. DOI 10.1112/S0010437X14008069. MR3406439.Google Scholar
[Nek16] Nekovář, J. Compatibility of arithmetic and algebraic local constants II. The tame abelian potentially Barsotti-Tate case. Preprint, (2016). Available at https://webusers.imj-prg.fr/~jan.nekovar/pu/tame.pdf.Google Scholar
[Oda69] Oda, T. The first de Rham cohomology group and Dieudonné modules. Ann. Sci. École Norm. Sup. (4) 2 (1969), 63135. MR0241435 (39 #2775).Google Scholar
[PR12] Poonen, B. and Rains, E. Random maximal isotropic subspaces and Selmer groups. J. Amer. Math. Soc. 25 (2012), no. 1, 245269. DOI 10.1090/S0894-0347-2011-00710-8. MR2833483.Google Scholar
[PS99] Poonen, B. and Stoll, M. The Cassels–Tate pairing on polarised abelian varieties. Ann. of Math. (2) 150 (1999), no. 3, 11091149. DOI 10.2307/121064. MR1740984 (2000m:11048).Google Scholar
[Ray65] Raynaud, M. Caractéristique d'Euler-Poincaré d'un faisceau et cohomologie des variétés abéliennes. Séminaire Bourbaki, Vol. 9 (Soc. Math. France, Paris, 1995), pp. Exp. No. 286, 129–147 (French). MR1608794.Google Scholar
[Sab07] Sabitova, M. Root numbers of abelian varieties. Trans. Amer. Math. Soc. 359 (2007), no. 9, 4259–4284 (electronic). DOI 10.1090/S0002-9947-07-04148-7. MR2309184 (2008c:11090).Google Scholar
[Ser67] Serre, J.-P.. Local class field theory. Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), (Thompson, Washington, D.C., 1967), pp. 128161, MR0220701 (36 #3753).Google Scholar
[Ser70] Serre, J.-P.. Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange-Pisot-Poitou. 11e année: 1969/70. Théorie des nombres. Fasc. 1: Exposés 1 à 15; Fasc. 2: Exposés 16 à 24, Secrétariat Mathématique, 1970, pp. 19-01–19-15. MR0401396 (53 #5224).Google Scholar
[Ser77] Serre, J.-P.. Linear Representations of Finite Groups (Springer-Verlag: New York, 1977). Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42, MR0450380 (56 #8675).Google Scholar
[Sha64] Shatz, S. St.. Cohomology of artinian group schemes over local fields. Ann. of Math. (2) 79 (1964), 411449. MR0193093 (33 #1314).Google Scholar
[ST68] Serre, J.-P. and Tate, J.. Good reduction of abelian varieties. Ann. of Math. (2) 88 (1968), 492517. MR0236190 (38 #4488).Google Scholar
[TW11] Trihan, F. and Wuthrich, C. Parity conjectures for elliptic curves over global fields of positive characteristic. Compos. Math. 147 (2011), no. 4, 11051128. DOI 10.1112/S0010437X1100532X. MR2822863 (2012j:11134).Google Scholar
[TY14] Trihan, F. and Yasuda, S. The ℓ -parity conjecture for abelian varieties over function fields of characteristic p > 0. Compos. Math. 150 (2014), no. 4, 507522. DOI 10.1112/S0010437X13007501. MR3200666.+0.+Compos.+Math.+150+(2014),+no.+4,+507–522.+DOI+10.1112/S0010437X13007501.+MR3200666.>Google Scholar