Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-16T18:37:57.303Z Has data issue: false hasContentIssue false

On Graeffe's Method for Complex Roots of Algebraic Equations

Published online by Cambridge University Press:  24 October 2008

S. Brodetsky
Affiliation:
Trinity College

Extract

The only really useful practical method for solving numerical algebraic equations of higher orders, possessing complex roots, is that devised by C. H. Graeffe early in the nineteenth century. When an equation with real coefficients has only one or two pairs of complex roots, the Graeffe process leads to the evaluation of these roots without great labour. If, however, the equation has a number of pairs of complex roots there is considerable difficulty in completing the solution: the moduli of the roots are found easily, but the evaluation of the arguments often leads to long and wearisome calculations. The best method that has yet been suggested for overcoming this difficulty is that by C. Runge (Praxis der Gleichungen, Sammlung Schubert). It consists in making a change in the origin of the Argand diagram by shifting it to some other point on the real axis of the original Argand plane. The new moduli and the old moduli of the complex roots can then be used as bipolar coordinates for deducing the complex roots completely: this also checks the real roots.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1924

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)