Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T02:09:58.768Z Has data issue: false hasContentIssue false

Moore's conjecture for polyhedral products

Published online by Cambridge University Press:  06 April 2018

YANLONG HAO
Affiliation:
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P.R. China. e-mails: haoyanlong13@mail.nankai.edu.cn; qwsun13@mail.nankai.edu.cn
QIANWEN SUN
Affiliation:
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P.R. China. e-mails: haoyanlong13@mail.nankai.edu.cn; qwsun13@mail.nankai.edu.cn
STEPHEN THERIAULT
Affiliation:
Mathematical Sciences, University of Southampton, Southampton SO17 1BJ. e-mail: S.D.Theriault@soton.ac.uk

Abstract

Moore's conjecture is shown to hold for generalised moment-angle complexes and a criterion is proved that determines when a polyhedral product is elliptic or hyperbolic.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported by the National Natural Science Foundation of China (No. 11571186)

References

REFERENCES

[1] Anick, D. J. Homotopy exponents for spaces of category two. Algebraic Topology (Arcata, CA, 1986), Lecture Notes in Math. 1370 (Springer, Berlin, 1989), pp. 2452.Google Scholar
[2] Bahri, A., Bendersky, M., Cohen, F. R. and Gilter, S. The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces. Adv. Math. 225 (2010), 16341668.Google Scholar
[3] Bahri, A., Bendersky, M., Cohen, F. R., and Gilter, S. On the rational type of moment-angle complexes. Proc. Steklov Inst. Math. 286 (2014), 219223.Google Scholar
[4] Buchstaber, V. M. and Panov, T. E. Toric topology. Math. Surv. Monogr. 204. (American Mathematical Society, 2015).Google Scholar
[5] Chachólski, W., Pitsch, W., Scherer, J. and Stanley, D.. Homotopy exponents for large H-spaces. Int. Math. Res. Not. IMRN 2008, 16, Art. ID rnn061, 5pp.Google Scholar
[6] Davis, M. W. and Januszkiewicz, T. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J. 62 (1991), 417452.Google Scholar
[7] Denham, G. and Suciu, A. Moment-angle complexes, monomial ideals and Massey products. Pure Appl. Math Q. 3 (2007), 2560.Google Scholar
[8] Félix, Y., Halperin, S. and Thomas, J.-C.. Elliptic spaces II. Enseign. Math. (2) 39 (1993), 2532.Google Scholar
[9] Félix, Y. and Tanré, D. Rational homotopy of the polyhedral product functor. Proc. Amer. Math. Soc. 137 (2009), 891898.Google Scholar
[10] Grbić, J. and Theriault, S. The homotopy type of the complement of a coordinate subspace arrangement. Topology 46 (2007), 357396.Google Scholar
[11] Grbić, J. and Theriault, S. The homotopy type of the polyhedral product for shifted complexes. Adv. Math. 245 (2013), 690715.Google Scholar
[12] Iriye, K. and Kishimoto, D. Decompositions of polyhedral products. Adv. Math. 245 (2013), 716736.Google Scholar
[13] James, I. M. The suspension triad of a sphere. Ann. of Math. 63 (1956), 407429.Google Scholar
[14] Long, J. Thesis Princeton University (1978).Google Scholar
[15] McGavran, D. Adjacent connected sums and torus actions. Trans. Amer. Math. Soc. 251 (1979), 235254.Google Scholar
[16] McGibbon, C. A. and Wilkerson, C. W.. Loop spaces of finite complexes at large primes. Proc. Amer. Math. Soc. 96 (1986), 698702.Google Scholar
[17] Neisendorfer, J. A. The exponent of a Moore space. Algebraic topology and algebraic K-theory (Princeton, N.J., 1983), 35–71. Ann. of Math. Stud. 113 (Princeton University Press, Princeton, NJ, 1987).Google Scholar
[18] Neisendorfer, J. and Selick, P. Some examples of spaces with and without homotopy exponents. Current trends in algebraic topology, Part 1 (London, Ont., 1981), pp. 343357. CMS Conf. Proc. 2 (Amer. Math. Soc., Providence, R.I., 1982).Google Scholar
[19] Porter, G. J. The homotopy groups of wedges of suspensions. Amer. J. Math. 88 (1966), 655663.Google Scholar
[20] Selick, P. On conjectures of Moore and Serre in the case of torsion-free suspensions. Math. Proc. Cambridge Philos. Soc. 94 (1983), 5360.Google Scholar
[21] Stelzer, M. Hyperbolic spaces at large primes and a conjecture of Moore. Topology 43 (2004), 667675.Google Scholar
[22] Toda, H. On the double suspension E 2. J. Inst. Polytech. Osaka City Univ., Ser. A 7 (1956), 103145.Google Scholar