[1]
Anantharaman-Delaroche, C. and Renault, J.
Amenable groupoids. l'Ensignement Mathématique
36 (2000).

[2]
Blackadar, B.
Operator algebras: Theory of *C**-algebras and von Neumann algebras. Encyclopaedia of Mathematical Sciences
122 (2006).

[3]
Brown, N.P. and Ozawa, N.
*C**-algebras and finite-dimensional approximations. Amer. Math. Soc. (Providence, RI, 2008), xvi+509.

[4]
Brownlowe, N., an Huef, A., Laca, M. and Raeburn, I.
Boundary quotients of the Toeplitz algebra of the affine semigroup over the natural numbers. Ergodic Theory Dynam. Systems
32 (2012), 35–62.

[5]
Carlsen, T., Larsen, N.S., Sims, A. and Vittadello, S.
Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems. Proc. Lond. Math. Soc.
103 (2011), 563–600.

[6]
Crisp, J. and Laca, M.
Boundary quotients and ideals of Toeplitz *C**-algebras of Artin groups. J. Funct. Anal.
242 (2007), 127–156.

[7]
Davidson, K.R., Fuller, A.H. and Kakariadis, E.T.A. Semicrossed products of operator algebras by semigroups. *Mem. Amer. Math. Soc.*, to appear.

[8]
Dixmier, J.
*C**-algebras, Translated from the French by Francis Jellett. North-Holland Mathematical Library, vol. 15 (North-Holland Publishing Co., Amsterdam, 1977), xiii+492.

[9]
Echterhoff, S., Kaliszewski, S., Quigg, J. and Raeburn, I.
A categorical approach to imprimitivity theorems for *C**-dynamical systems. Mem. Amer. Math. Soc.
180 (2006), viii+169.

[10]
Exel, R.
Inverse semigroups and combinatorial *C**-algebras. Bull. Braz. Math. Soc. (N.S.)
39 (2008), 191–313.

[11]
Exel, R., Laca, M. and Quigg, J.
Partial dynamical systems and *C**-algebras generated by partial isometries. J. Operator Theory
47 (2002), 169–186.

[12]
Fell, J.M.G. and Doran, R.S.
Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles. Pure Appl. Math.
178 (1988).

[13]
Fowler, N.J.
Discrete product systems of Hilbert bimodules. Pacific J. Math.
204 (2002), 335–375.

[14]
an Huef, A., Raeburn, I. and Williams, D.P.
Properties preserved under Morita equivalence of *C**-algebras. Proc. Amer. Math. Soc.
135 (2007), 1495–1503.

[15]
Kaliszewski, S. and Quigg, J.
Erratum to “Full and reduced C*-coactions”. Math. Proc. Camb. Phil. Soc.
116 (1994), 435–450, *Math. Proc. Camb. Phil. Soc.*
**161** (2016), 379–380.

[16]
Kwasniewski, B. and Szymański, W.
Topological aperiodicity for product systems over semi-groups of Ore type. J. Funct. Anal.
270 (2016), 3453–3504.

[17]
Laca, M. and Raeburn, I.
Semigroup crossed products and the Toeplitz algebras of nonabelian groups. J. Funct. Anal.
139 (1996), 415–440.

[18]
Muhly, P.S. and Renault, J.
*C**-algebras of multivariable Wiener–Hopf operators. Trans. Amer. Math. Soc.
274 (1982), 1–44.

[19]
Muhly, P.S. and Williams, D.P. Equivalence and disintegration theorems for Fell bundles and their *C**-algebras. *Dissertationes Mathematicae*, Warszawa (2008).

[20]
Nica, A.
*C**-algebras generated by isometries and Weiner–Hopf operators. J. Operator Theory
27 (1992), 17–52.

[21]
Pimsner, M.V.
A class of *C**-algebras generalizing both Cuntz-Krieger algebras and crossed products by **Z**
. Fields Inst. Commun.
**12**, Free probability theory (Waterloo, ON, 1995) (Amer. Math. Soc., Providence, RI, 1997), 189–212.

[22]
Quigg, J.
Full and reduced *C**-coactions. Math. Proc. Camb. Phil. Soc.
116 (1994), 435–450.

[23]
Quigg, J.
Discrete *C**-coactions and *C**-algebraic bundles. J. Austral. Math. Soc. Ser. A 60 (1996), 204–221.

[24]
Raeburn, I. and Sims, A.
Product systems of graphs and the Toeplitz algebras of higher-rank graphs. J. Operator Theory
53 (2005), no. 2, 399–429.

[25]
Rørdam, M.
Classification of nuclear, simple *C**-algebras. Classification of nuclear *C**-algebras. Entropy in operator algebras. Encyclopaedia Math. Sci.
126, (Springer, Berlin, 2002), 1–145.

[26]
Sims, A. and Williams, D.P.
Amenability for Fell bundles over groupoids. Illinois J. Math.
57 (2013), 429–444.

[27]
Sims, A. and Yeend, T.
*C**-algebras associated to product systems of Hilbert bimodules. J. Operator Theory
64 (2010), 349–376.

[28]
Takeishi, T.
On nuclearity of *C**-algebras of Fell bundles over étale groupoids. Publ. Res. Inst. Math. Sci.
50 (2014), 251–268.