Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T07:32:26.968Z Has data issue: false hasContentIssue false

Generalized canonical formalism for degenerate dynamical systems

Published online by Cambridge University Press:  24 October 2008

S. Shanmugadhasan
Affiliation:
Division of Pure Physics, National Research Council, Ottawa, Canada

Extract

The familiar classical dynamical theory treats only a restricted class of dynamical systems. For a Lagrangian depending on n generalized coordinates, the n generalized velocities, and (perhaps) the time the usual theory considers only the normal case in which the Hessian matrix of the Lagrangian with respect to the generalized velocities has rank n. But the rank of this Hessian matrix can be less than n in a given dynamical system. Dynamical systems with this property are called degenerate in the present work. Some important physical systems do in fact belong to this degenerate class: for instance, Einstein's theory of the gravitational field, the theory of the electromagnetic field in terms of the electromagnetic potentials, and the theory of the neutral vector meson field. This circumstance makes it necessary to have a general theory of degenerate dynamical systems (and of the associated degenerate variational problems).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bergmann, P. G.Helvetica Phys. Acta Supplementum, 4 (1956), 7997Google Scholar
(2)Bergmann, P. G.Rev. Mod. Phys. 33 (1961), 510514CrossRefGoogle Scholar
(3)Dirac, P. A. M.Canad. J. Math. 2 (1950), 129148CrossRefGoogle Scholar
(4)Dirac, P. A. M.Ann. Inst. H. Poincaré, 13 (1952), 142Google Scholar
(5)Dirac, P. A. M.The principles of quantum mechanics, 4th ed. (Clarendon Press; Oxford, 1958).CrossRefGoogle Scholar
(6)Dirac, P. A. M.Proc. Roy. Soc. London, Ser. A, 246 (1958), 326332Google Scholar
(7)Gurevič, A. S.Vestnik Leningrad. Univ. 14 (1959), no. 19, 6477.Google Scholar
(8)Haag, R.Z. Angew. Math. Mech. 32 (1952), 197202CrossRefGoogle Scholar
(9)Jauch, J. M. and Misra, B.Helvetica Phys. Acta, 34 (1961), 699709Google Scholar
(10)Noether, E.Nachr. Gesell. Wiss. Göttingen. Math.-Phys. Kl. 1918, 235258.Google Scholar
(11)Rosenfeld, L.Ann. Physik, (5), 5 (1930), 113152CrossRefGoogle Scholar
(12)Rosenfeld, L.Ann. Inst. H. Poincaré, 2 (1932), 2591Google Scholar
(13)Utiyama, R.Progr. Theoret. Phys. Suppl.. 9 (1959), 1944CrossRefGoogle Scholar
(14)Wick, G. C., Wightman, A. S. and Wigner, E. P.Phys. Rev. (2), 88 (1952), 101105CrossRefGoogle Scholar