Skip to main content Accessibility help
×
Home

Boolean functions with small spectral norm, revisited

  • TOM SANDERS (a1)

Abstract

We show that if f is a Boolean function on F2n with spectral norm at most M then there is some L ≤ exp(M3+o(1)) and subspaces V1,. . .,VL such that f = Σi ± 1Vi.

Copyright

References

Hide All
[1] Ada, A., Fawzi, O. and Hatami, H.. Spectral norm of symmetric functions. Approximation, randomisation, and combinatorial optimisation. algorithms and techniques (2012), 338–349.
[2] Croot, E. S., Łaba, I. and Sisask, O.. Arithmetic progressions in sumsets and L p-almost-periodicity (2011).
[3] Green, B. J. and Konyagin, S. V. On the Littlewood problem modulo a prime. Canad. J. Math., 61 (2009), no. 1, 141164.
[4] Green, B. J. and Sanders, T.. Boolean functions with small spectral norm. Geom. Funct. Anal. 18 (2008), no. 1, 144162, arXiv:math/0605524.
[5] Green, B. J. and Sanders, T.. A quantitative version of the idempotent theorem in harmonic analysis. Ann. of Math. (2), 168 (2008), no. 3, 10251054, arXiv:math/0611286.
[6] Grolmusz, V.. On the power of circuits with gates of low L 1 norms. Theoret. Comput. Sci. 188 (1997), no. 1-2, 117128.
[7] Kushilevitz, E. and Mansour, Y. Learning decision trees using the fourier spectrum. SIAM Journal on Computing, 22 (1993), no. 6, 13311348, https://doi.org/10.1137/0222080.
[8] Mansour, Y.. Learning Boolean functions via the Fourier transform. Theoretical Advances in Neural Computation and Learning. (1994), 391–424.
[9] Méla, J.-F Mesures ϵ-idempotentes de norme bornée. Studia Math., 72 (1982), no. 2, 131149.
[10] Ruzsa, I. Z. An analog of Freĭman's theorem in groups. Astérisque. 258 (1999), xv, 323326, Structure theory of set addition.
[11] Sanders, T.. On the Bogolyubov-Ruzsa lemma. Anal. PDE, 5 (2012), no. 3, 627655, arXiv:1011.0107.
[12] Sanders, T.. The structure theory of set addition revisited. Bull. Amer. Math. Soc. 50 (2013), 93127, arXiv:1212.0458.
[13] Sanders, T. Bounds in the idempotent theorem. ArXiv e-prints (October 2016), available at 1610.07092,
[14] Shpilka, A., Tal, A. and Volk, B. On the structure of Boolean functions with small spectralnorm. Proceedings of the 5th conference on innovations in theoretical computer science (2014), pp. 37–48.
[15] Tao, T. C. and Vu, H. V. Additive combinatorics. Camb. Stud. Adv. Math., vol. 105 (Cambridge University Press, Cambridge, 2006).
[16] Tsang, H.-Y., Wong, C., Xie, N. and Zhang, S. Fourier sparsity, spectral norm, and the log-rank conjecture, Proceedings of the 2013 ieee 54th annual symposium on foundations of computer science (2013), pp. 658–667.
[17] Zwillinger, D., Krantz, S. G. and Rosen, K. H. (eds.). CRC Standard Mathematical Tables and Formulae, 31st ed. (CRC Press, Boca Raton, FL, 2003).

Boolean functions with small spectral norm, revisited

  • TOM SANDERS (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed