Skip to main content Accessibility help
×
Home

An extremum variational principle and error estimate procedure for qIV = f(q, x)

  • Dj. S. Djukic (a1) and T. M. Atanackovic (a1)

Abstract

An extremum variational principle for boundary value problems described by a non-linear fourth order differential equation qIV = f(q, x) is constructed. For approximate solutions an error estimate procedure, based on the value of the functional, is developed and applied to two concrete problems.

Copyright

References

Hide All
(1)Djukic, Dj. S. and Atanackovic, T. M.Error bounds via a new extremum variational principle, mean square residual and weighted mean square residual. J. Math. Anal. Appl. 75 (1980), 203218.
(2)Atanackovic, T. M. and Djukic, Dj. S.An extremum variational principle for a class of boundary value problems. J. Math. Anal. Appl. (in press.)
(3)Churchill, R. V.Fourier series and boundary value problems (McGraw-Hill, New York, 1969).
(4)Pfeffer, A. M.On certain discrete inequalities and their continuous analogs. J. Res. Nat. Bur. Standards (B: Math, and Math. Physics) 70 B (1966), 221231.
(5)Clarlet, P. G., Schultz, M. H. and Varga, R. S.Numerical methods of high order accuracy for nonlinear boundary value problems. Numer. Math. 9 (1967), 394430.
(6)Anderson, N. and Arthurs, A. M.Complementary variational principles for φ IV = f(φ). Proc. Cambridge Philos. Soc. 68 (1970), 173177.
(7)Anderson, N., Arthurs, A. M. and Hall, R. R.Extremum principles for a nonlinear problem in magneto-elasticity. Proc. Cambridge Philos. Soc. 72 (1972), 315318.

An extremum variational principle and error estimate procedure for qIV = f(q, x)

  • Dj. S. Djukic (a1) and T. M. Atanackovic (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.